Solution
-
- Community Team
- Posts: 426
- Joined: Mon Nov 09, 2015 2:52 pm
Solution
Solve the problem
\(\displaystyle{u_{tt}(x,t)-u_{xx}(x,t)=0\,,(x,t)\in\left(0,\pi\right)\times \left(0,+\infty\right)}\), where
\(\displaystyle{u(x,0)=x\,,0\leq x\leq \pi\,\,,u_{t}(x,0)=\sin\,x\,,0\leq x\leq \pi\,\,,u(0,t)=u(\pi,t)=0\,,t\geq 0\,\,\,,u\in C^{\infty}}\)
Find
\(\displaystyle{M=\max\,\left\{u(x,t)\in\mathbb{R}\,\,,(x,t)\in\left[0,\pi\right]\times \left[0,+\infty\right)\right\}}\).
\(\displaystyle{u_{tt}(x,t)-u_{xx}(x,t)=0\,,(x,t)\in\left(0,\pi\right)\times \left(0,+\infty\right)}\), where
\(\displaystyle{u(x,0)=x\,,0\leq x\leq \pi\,\,,u_{t}(x,0)=\sin\,x\,,0\leq x\leq \pi\,\,,u(0,t)=u(\pi,t)=0\,,t\geq 0\,\,\,,u\in C^{\infty}}\)
Find
\(\displaystyle{M=\max\,\left\{u(x,t)\in\mathbb{R}\,\,,(x,t)\in\left[0,\pi\right]\times \left[0,+\infty\right)\right\}}\).
Create an account or sign in to join the discussion
You need to be a member in order to post a reply
Create an account
Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute
Sign in
Who is online
Users browsing this forum: No registered users and 0 guests