Let $W\subset \mathbb{R}^n$ be a linear subspace of dimension at most $n-1$. Which of the following statements are true ??
a)$W$ is nowhere dense
b)$W$ is closed
c)$\mathbb{R}^n-W$ is connected
d)$\mathbb{R}^n-W$ is not connected
Search found 4 matches
- Sun Mar 31, 2019 9:43 pm
- Forum: Real Analysis
- Topic: Nowhere dense of linear subspace of at most n-1
- Replies: 0
- Views: 4080
- Wed Dec 05, 2018 11:41 pm
- Forum: General Topology
- Topic: $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$
- Replies: 2
- Views: 7246
Re: $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$
No take a sequence $(2+\frac{\sqrt{2}}{n},\sqrt{2})\to (2,\sqrt{2})$
- Wed Dec 05, 2018 11:27 pm
- Forum: Algebraic Structures
- Topic: Find the number of homomorphism
- Replies: 1
- Views: 3720
Find the number of homomorphism
How to find the number of homomorphism of these
a)$$Q_8\to K_4$$
b)$$K_4\to S_n(n\neq 4)$$
c)$$K_4\to S_4$$
a)$$Q_8\to K_4$$
b)$$K_4\to S_n(n\neq 4)$$
c)$$K_4\to S_4$$
- Mon Dec 03, 2018 6:44 pm
- Forum: Linear Algebra
- Topic: Eigenvalues of Symmetric Matrices
- Replies: 1
- Views: 4341
Eigenvalues of Symmetric Matrices
For any two symmetric $n\times n$ matrices $A$ and $B$ be their eigenvalues be ordered from largest to smallest . How to prove that for eigenvalues $|\lambda _k^A-\lambda _k^B|\le ||A-B||$ for $1\le k\le n$. Where $\lambda _k^A,\lambda _k^B$ are respective eigenvalues of $A$ and $B$