A series

Calculus (Integrals, Series)
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

A series

#1

Post by Tolaso J Kos »

Evaluate the series:

$$\mathcal{S}=\sum_{n=0}^{\infty} \left ( \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{n+k} \right )^2$$
(Limits, Series and Fractional Part Integrals: Problems in Mathematical Analysis)
Imagination is much more important than knowledge.
r9m
Posts: 59
Joined: Thu Dec 10, 2015 1:58 pm
Location: India
Contact:

Re: A series

#2

Post by r9m »

\begin{align*}\sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k}}{n+k}\right)^2 &= \sum\limits_{n=0}^{\infty} \left((-1)^{n}\int_0^{1} \frac{x^n}{1+x}\,dx\right)^2\\&= \sum\limits_{n=0}^{\infty} \int_0^{1}\int_0^1 \frac{x^ny^n}{(1+x)(1+y)}\,dx\, dy\\&= \int_0^{1} \int_0^1 \frac{\,dx \,dy}{(1-xy)(1+x)(1+y)}\\&= \int_0^1 \left(\int_0^1 \frac{y}{1-xy} + \frac{1}{1+x}\,dx\right)\frac{\,dy}{(1+y)^2}\\&= \int_0^1 \frac{\log 2 - \log (1-y)}{(1+y)^2}\,dy\\&= -\frac{1}{4}\int_0^1 \frac{\log (y/2)}{\left(1-\frac{y}{2}\right)^2}\,dy\\&= -\frac{1}{2}\int_0^{1/2} \frac{\log y}{(1-y)^2}\,dy\\&= -\frac{1}{2}\int_0^{1/2} \sum\limits_{n=1}^{\infty} ny^{n-1}\log y\,dy\\&= \frac{1}{2}\sum\limits_{n=1}^{\infty} \frac{1+n\log 2}{n2^n} = \log 2\end{align*}
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 34 guests