Welcome to mathimatikoi.org; a site of university mathematics! Enjoy your stay here!

Convergence of a series

Real Analysis
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Articles: 2
Posts: 853
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Convergence of a series

#1

Post by Tolaso J Kos » Tue May 10, 2016 8:48 pm

Examine if the series

$$\sum_{n=1}^{\infty} \left [ \frac{1\cdot 3 \cdot 5\cdots \left ( 2n-1 \right )}{2 \cdot 4 \cdot 6 \cdots \left ( 2n \right )} \right ]^2 $$

converges.
Imagination is much more important than knowledge.
User avatar
Grigorios Kostakos
Founder
Founder
Articles: 0
Posts: 460
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Convergence of a series

#2

Post by Grigorios Kostakos » Fri Mar 16, 2018 1:11 pm

Let $\alpha_n=\big(\frac{(2n-1)!!}{(2n)!!}\big)^2\,,\; n\in\mathbb{N}$ and $\beta_n=n\,,\; n\in\mathbb{N}$. Then $\sum_{n=1}^{\infty}\frac{1}{\beta_n}=+\infty$ and for all $n\in\mathbb{N}$ holds
\begin{align*}
\beta_n-\beta_{n+1}\,\frac{\alpha_{n+1}}{\alpha_n}&=-\frac{1}{4(n+1)}<0\,.
\end{align*}
By Kummer's criterion we have that $\sum_{n=1}^{\infty}\big(\frac{(2n-1)!!}{(2n)!!}\big)^2=+\infty$.
Grigorios Kostakos
Post Reply