Three similar improper integrals

Calculus (Integrals, Series)
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Three similar improper integrals

#1

Post by Grigorios Kostakos »

Evaluate for $n,m\in\mathbb{N}$ the following integrals:

\(\begin{aligned}
1.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{1+x^2}\,{\rm{d}}x\\\\
2.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log{x}}{(1+x^2)^m}\,{\rm{d}}x\\\\
3.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{(1+x^2)^m}\,{\rm{d}}x
\end{aligned}\)
Grigorios Kostakos
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Three similar improper integrals

#2

Post by Tolaso J Kos »

Grigorios Kostakos wrote:$1.\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{1+x^2}\,{\rm{d}}x$
Well, for the first one for the moment... We have successively:

\begin{align*} \int_{0}^{\infty} \frac{\log^n x}{1+x^2}\, {\rm d}x &= \int_{0}^{1} \frac{\log^n x}{1+x^2}\, {\rm d}x + \int_{1}^{\infty} \frac{\log^n x}{1+x^2}\, {\rm d}x\\ &= \int_{0}^{1} \frac{\log^n x}{1+x^2}\, {\rm d}x - \int_{1}^{0} \frac{\log^n \left ( \frac{1}{x} \right )}{1+ \left ( \frac{1}{x} \right )^2} \frac{1}{x^2} \, {\rm d}x\\ &= \int_{0}^{1} \frac{\log^n x}{1+x^2} \, {\rm d}x + \int_{0}^{1} \frac{\log^n \left ( \frac{1}{x} \right )}{1+x^2}\, {\rm d}x\\ &= \int_{0}^{1} \frac{\log^n x}{1+x^2}\, {\rm d}x+ \int_{0}^{1} \frac{(-1)^n \log^n x}{1+x^2} \, {\rm d}x \\ &= \left ( 1+(-1)^n \right ) \int_{0}^{1} \frac{\log^n x}{1+x^2} \, {\rm d}x\\ &=\left ( 1+(-1)^n \right )\int_{0}^{1} \log^n x \sum_{k=0}^{\infty} (-1)^k x^{2k} \, {\rm d}x \\ &= \left ( 1+(-1)^n \right ) \sum_{k=0}^{\infty} (-1)^k \int_{0}^{1}x^{2k} \log^n x \, {\rm d}x\\ &= \left ( 1+(-1)^n \right )(-1)^n n! \sum_{k=0}^{\infty} \frac{(-1)^k}{\left ( 2k+1 \right )^{n+1}} \\ &= \left ( 1+(-1)^n \right )(-1)^n n! \sum_{k=0}^{\infty} \left [ \frac{1}{\left ( 4k+1 \right )^{n+1}} - \frac{1}{\left ( 4k+3 \right )^{n+1}} \right ] \\ &=\left ( 1+(-1)^n \right )(-1)^n n! \frac{1}{4^{n+1}} \sum_{k=0}^{\infty} \left [ \frac{1}{\left ( k+ \frac{1}{4} \right )^{n+1}} - \frac{1}{\left ( k+\frac{3}{4} \right )^{n+1}} \right ] \\ &= \frac{1}{4^{n+1}}\left ( 1+(-1)^n \right ) \left [ \psi^{(n)} \left ( \frac{3}{4} \right ) - \psi^{(n)} \left ( \frac{1}{4} \right )\right ] \end{align*}

Thus, distinguishing cases for $n$ (either it is odd or even) we get the following beautiful closed form:

$$\int_{0}^{\infty}\frac{\log^n x}{1+x^2}\, {\rm d}x = \left\{\begin{matrix} 0 &, &n \; {\rm odd} \\\\ \displaystyle \frac{2}{4^{n+1}}\left [ \psi^{(n)} \left ( \frac{3}{4} \right ) - \psi^{(n)} \left ( \frac{1}{4} \right ) \right ]& ,& n \; {\rm even} \end{matrix}\right.$$

Recalling also that , if $n$ is even:

$$\psi^{(n)}(1-z)-\psi^{(n)} (z)= \pi \; \frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}} \cot \pi z \tag{ polygamma reflection formula}$$

holds, the above formula reduces down to - the not so beautiful -

$$\int_{0}^{\infty} \frac{\log^n x}{1+x^2}\, {\rm d}x = \left[ \frac{2\pi}{4^{n+1}} \frac{\mathrm{d}^n }{\mathrm{d} x^n} \cot \pi z \right]_{z=1/4} \;\; n \; \; {\rm even}$$

:clap2: :clap2: :clap2:
Hidden Message
For any declarations, you are free to ask.
Imagination is much more important than knowledge.
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Three similar improper integrals

#3

Post by Tolaso J Kos »

Actually there is no need for polygammas. In the step
Tolaso J Kos wrote: $$\left ( 1+(-1)^n \right )(-1)^n n! \sum_{k=0}^{\infty} \frac{(-1)^k}{\left ( 2k+1 \right )^{n+1}}$$
we can easily recognize the Beta Dirichlet function. Thus:

$$\int_{0}^{\infty} \frac{\log^n x}{ 1+x^2 } \, {\rm d}x= \left\{\begin{matrix}
0& , &n \; {\rm odd} \\
2 n! \beta(n+1)&, & n \; {\rm even}
\end{matrix}\right.$$

Of course evaluating $\beta(n+1)$ returns us back to the polygamma values, thus the first closed form is much more preferable.
Imagination is much more important than knowledge.
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Three similar improper integrals

#4

Post by Tolaso J Kos »

Grigorios Kostakos wrote: $2.\displaystyle \int_{0}^{+\infty}\frac{\log{x}}{(1+x^2)^m}\,{\rm{d}}x$
Let us begin with the following two known represantations of the Beta function:

$${\rm B}(x, y)= \int_{0}^{\infty} \frac{t^{x-1}}{\left ( 1+t \right )^{x+y}}\, {\rm d}t = \frac{\Gamma (x)\Gamma (y)}{\Gamma \left ( x+y \right )}$$

Now, setting $t \mapsto t^2$ as well as $y \mapsto m -x$ we have that:

\begin{equation} {\rm B} \left ( x, m-x \right )= m \int_{0}^{\infty} \frac{t^{2x-1}}{\left ( 1+t^2 \right )^m}\, {\rm d}t \end{equation}

Now, differentiating $(1)$ with respect to $x$ once we have that:

$$\int_{0}^{\infty} \frac{t^{2x-1} \log t }{\left ( 1+t^2 \right )^m}\, {\rm d}t = \frac{\Gamma (x)\Gamma(m-x) \bigg [ \psi^{(0)}(x)- \psi^{(0)}(m-x) \bigg ]}{m^2 \Gamma(m)}$$

Thus our required integral is equal to:

$$ \int_{0}^{\infty} \frac{\log x}{\left ( 1+x^2 \right )^m}\, {\rm d}x ={\rm B}^{(1)} \left ( \frac{1}{2}, m- \frac{1}{2} \right ) = \frac{\Gamma \left ( \frac{1}{2} \right ) \Gamma \left ( m- \frac{1}{2} \right ) \bigg[ \psi^{(0)}\left ( \frac{1}{2}\right) - \psi^{(0)} \left ( m- \frac{1}{2} \right ) \bigg]}{m^2 \Gamma(m)}$$

:clap2: :clap2: :clap2:
Imagination is much more important than knowledge.
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Three similar improper integrals

#5

Post by Tolaso J Kos »

Grigorios Kostakos wrote: $3.\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{(1+x^2)^m}\,{\rm{d}}x$
As can be seen from the above solution ,

$$\int_{0}^{\infty} \frac{\log^n x}{\left ( 1+x^2 \right )^m}\, {\rm d}x = {\rm B}^{(n)} \left ( \frac{1}{2}, m- \frac{1}{2} \right )$$

However, we hardly know anything about the high order derivatives of the Beta function. What is known however are the following recursive formulae:
  • $$ \Gamma^{(n+1)} (1)= -\gamma \Gamma^{(n)} (1) +n ! \sum_{k=1}^{n} \frac{(-1)^{k+1}}{\left ( n-k \right )!} \zeta(k+1)\Gamma^{(n-k)} (1)$$
  • $$\Gamma^{(n+1)}\left ( \frac{1}{2} \right )= -\left ( \gamma +2 \log 2 \right ) \Gamma^{(n)} \left ( \frac{1}{2} \right ) +n ! \sum_{k=1}^{n}\frac{(-1)^{k+1}}{\left ( n-k \right )!} \left ( 2^{k+1}-1 \right )\zeta(k+1) \Gamma^{(n-k)}\left ( \frac{1}{2} \right )$$
The interested reader will undoubtely find more information in this paper.

So, the best we can do for the moment for the third integral is to leave it that way.
Imagination is much more important than knowledge.
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Three similar improper integrals

#6

Post by Tolaso J Kos »

From the paper above we also get that if $n \in \mathbb{N}$ and

$$I(n)= \int_{0}^{\infty} \frac{\left ( \log t \right )^n}{(1+t)\sqrt{t}} \, {\rm d}t $$

then:

$$I(n)= \left\{\begin{matrix}
0 &, &n \; \text{odd} \\
\displaystyle2\sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \Gamma^{(2n-k)} \left ( \frac{1}{2} \right )\Gamma^{(k)} \left ( \frac{1}{2} \right ) + (-1)^n \binom{2n}{n}\left [ \Gamma^{(n)} \left ( \frac{1}{2} \right ) \right ]^2& , & n \; \text{even}
\end{matrix}\right. $$
Imagination is much more important than knowledge.
User avatar
Riemann
Posts: 176
Joined: Sat Nov 14, 2015 6:32 am
Location: Melbourne, Australia

Re: Three similar improper integrals

#7

Post by Riemann »

A relative post can be found here.
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Three similar improper integrals

#8

Post by Tolaso J Kos »

Grigorios Kostakos wrote: 3.$\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{(1+x^2)^m}\,{\rm{d}}x$
It is nice to share ideas with people around the world just to realize that you are ignoring the obvious. All we need for this is Liebniz's General Rule thus the last integral boils down to:

$$\int_{0}^{\infty} \frac{\log^n x}{\left ( 1+x^2 \right )^m}\, {\rm d}x = {\rm B}^{(n)} \left ( \frac{1}{2}, m- \frac{1}{2} \right )= \frac{1}{m^2 \Gamma(m)}\sum_{k=0}^{n} \binom{n}{k} \Gamma^{(k)} \left ( \frac{1}{2} \right )\Gamma^{(n-k)} \left ( m- \frac{1}{2} \right )$$

Then we are using the reduction formula for $\Gamma^{(n)} \left( \frac{1}{2}\right)$ which I quoted above:
Tolaso J Kos wrote: $$\Gamma^{(n+1)}\left ( \frac{1}{2} \right )= -\left ( \gamma +2 \log 2 \right ) \Gamma^{(n)} \left ( \frac{1}{2} \right ) +n ! \sum_{k=1}^{n}\frac{(-1)^{k+1}}{\left ( n-k \right )!} \left ( 2^{k+1}-1 \right )\zeta(k+1) \Gamma^{(n-k)}\left ( \frac{1}{2} \right )$$
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 4 guests