Three similar improper integrals
- Grigorios Kostakos
- Founder
- Posts: 460
- Joined: Mon Nov 09, 2015 1:36 am
- Location: Ioannina, Greece
Three similar improper integrals
Evaluate for $n,m\in\mathbb{N}$ the following integrals:
\(\begin{aligned}
1.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{1+x^2}\,{\rm{d}}x\\\\
2.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log{x}}{(1+x^2)^m}\,{\rm{d}}x\\\\
3.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{(1+x^2)^m}\,{\rm{d}}x
\end{aligned}\)
\(\begin{aligned}
1.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{1+x^2}\,{\rm{d}}x\\\\
2.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log{x}}{(1+x^2)^m}\,{\rm{d}}x\\\\
3.\quad &\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{(1+x^2)^m}\,{\rm{d}}x
\end{aligned}\)
Grigorios Kostakos
- Tolaso J Kos
- Administrator
- Posts: 866
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Re: Three similar improper integrals
Well, for the first one for the moment... We have successively:Grigorios Kostakos wrote:$1.\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{1+x^2}\,{\rm{d}}x$
\begin{align*} \int_{0}^{\infty} \frac{\log^n x}{1+x^2}\, {\rm d}x &= \int_{0}^{1} \frac{\log^n x}{1+x^2}\, {\rm d}x + \int_{1}^{\infty} \frac{\log^n x}{1+x^2}\, {\rm d}x\\ &= \int_{0}^{1} \frac{\log^n x}{1+x^2}\, {\rm d}x - \int_{1}^{0} \frac{\log^n \left ( \frac{1}{x} \right )}{1+ \left ( \frac{1}{x} \right )^2} \frac{1}{x^2} \, {\rm d}x\\ &= \int_{0}^{1} \frac{\log^n x}{1+x^2} \, {\rm d}x + \int_{0}^{1} \frac{\log^n \left ( \frac{1}{x} \right )}{1+x^2}\, {\rm d}x\\ &= \int_{0}^{1} \frac{\log^n x}{1+x^2}\, {\rm d}x+ \int_{0}^{1} \frac{(-1)^n \log^n x}{1+x^2} \, {\rm d}x \\ &= \left ( 1+(-1)^n \right ) \int_{0}^{1} \frac{\log^n x}{1+x^2} \, {\rm d}x\\ &=\left ( 1+(-1)^n \right )\int_{0}^{1} \log^n x \sum_{k=0}^{\infty} (-1)^k x^{2k} \, {\rm d}x \\ &= \left ( 1+(-1)^n \right ) \sum_{k=0}^{\infty} (-1)^k \int_{0}^{1}x^{2k} \log^n x \, {\rm d}x\\ &= \left ( 1+(-1)^n \right )(-1)^n n! \sum_{k=0}^{\infty} \frac{(-1)^k}{\left ( 2k+1 \right )^{n+1}} \\ &= \left ( 1+(-1)^n \right )(-1)^n n! \sum_{k=0}^{\infty} \left [ \frac{1}{\left ( 4k+1 \right )^{n+1}} - \frac{1}{\left ( 4k+3 \right )^{n+1}} \right ] \\ &=\left ( 1+(-1)^n \right )(-1)^n n! \frac{1}{4^{n+1}} \sum_{k=0}^{\infty} \left [ \frac{1}{\left ( k+ \frac{1}{4} \right )^{n+1}} - \frac{1}{\left ( k+\frac{3}{4} \right )^{n+1}} \right ] \\ &= \frac{1}{4^{n+1}}\left ( 1+(-1)^n \right ) \left [ \psi^{(n)} \left ( \frac{3}{4} \right ) - \psi^{(n)} \left ( \frac{1}{4} \right )\right ] \end{align*}
Thus, distinguishing cases for $n$ (either it is odd or even) we get the following beautiful closed form:
$$\int_{0}^{\infty}\frac{\log^n x}{1+x^2}\, {\rm d}x = \left\{\begin{matrix} 0 &, &n \; {\rm odd} \\\\ \displaystyle \frac{2}{4^{n+1}}\left [ \psi^{(n)} \left ( \frac{3}{4} \right ) - \psi^{(n)} \left ( \frac{1}{4} \right ) \right ]& ,& n \; {\rm even} \end{matrix}\right.$$
Recalling also that , if $n$ is even:
$$\psi^{(n)}(1-z)-\psi^{(n)} (z)= \pi \; \frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}} \cot \pi z \tag{ polygamma reflection formula}$$
holds, the above formula reduces down to - the not so beautiful -
$$\int_{0}^{\infty} \frac{\log^n x}{1+x^2}\, {\rm d}x = \left[ \frac{2\pi}{4^{n+1}} \frac{\mathrm{d}^n }{\mathrm{d} x^n} \cot \pi z \right]_{z=1/4} \;\; n \; \; {\rm even}$$



Hidden Message
Imagination is much more important than knowledge.
- Tolaso J Kos
- Administrator
- Posts: 866
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Re: Three similar improper integrals
Actually there is no need for polygammas. In the step
$$\int_{0}^{\infty} \frac{\log^n x}{ 1+x^2 } \, {\rm d}x= \left\{\begin{matrix}
0& , &n \; {\rm odd} \\
2 n! \beta(n+1)&, & n \; {\rm even}
\end{matrix}\right.$$
Of course evaluating $\beta(n+1)$ returns us back to the polygamma values, thus the first closed form is much more preferable.
we can easily recognize the Beta Dirichlet function. Thus:Tolaso J Kos wrote: $$\left ( 1+(-1)^n \right )(-1)^n n! \sum_{k=0}^{\infty} \frac{(-1)^k}{\left ( 2k+1 \right )^{n+1}}$$
$$\int_{0}^{\infty} \frac{\log^n x}{ 1+x^2 } \, {\rm d}x= \left\{\begin{matrix}
0& , &n \; {\rm odd} \\
2 n! \beta(n+1)&, & n \; {\rm even}
\end{matrix}\right.$$
Of course evaluating $\beta(n+1)$ returns us back to the polygamma values, thus the first closed form is much more preferable.
Imagination is much more important than knowledge.
- Tolaso J Kos
- Administrator
- Posts: 866
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Re: Three similar improper integrals
Let us begin with the following two known represantations of the Beta function:Grigorios Kostakos wrote: $2.\displaystyle \int_{0}^{+\infty}\frac{\log{x}}{(1+x^2)^m}\,{\rm{d}}x$
$${\rm B}(x, y)= \int_{0}^{\infty} \frac{t^{x-1}}{\left ( 1+t \right )^{x+y}}\, {\rm d}t = \frac{\Gamma (x)\Gamma (y)}{\Gamma \left ( x+y \right )}$$
Now, setting $t \mapsto t^2$ as well as $y \mapsto m -x$ we have that:
\begin{equation} {\rm B} \left ( x, m-x \right )= m \int_{0}^{\infty} \frac{t^{2x-1}}{\left ( 1+t^2 \right )^m}\, {\rm d}t \end{equation}
Now, differentiating $(1)$ with respect to $x$ once we have that:
$$\int_{0}^{\infty} \frac{t^{2x-1} \log t }{\left ( 1+t^2 \right )^m}\, {\rm d}t = \frac{\Gamma (x)\Gamma(m-x) \bigg [ \psi^{(0)}(x)- \psi^{(0)}(m-x) \bigg ]}{m^2 \Gamma(m)}$$
Thus our required integral is equal to:
$$ \int_{0}^{\infty} \frac{\log x}{\left ( 1+x^2 \right )^m}\, {\rm d}x ={\rm B}^{(1)} \left ( \frac{1}{2}, m- \frac{1}{2} \right ) = \frac{\Gamma \left ( \frac{1}{2} \right ) \Gamma \left ( m- \frac{1}{2} \right ) \bigg[ \psi^{(0)}\left ( \frac{1}{2}\right) - \psi^{(0)} \left ( m- \frac{1}{2} \right ) \bigg]}{m^2 \Gamma(m)}$$



Imagination is much more important than knowledge.
- Tolaso J Kos
- Administrator
- Posts: 866
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Re: Three similar improper integrals
As can be seen from the above solution ,Grigorios Kostakos wrote: $3.\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{(1+x^2)^m}\,{\rm{d}}x$
$$\int_{0}^{\infty} \frac{\log^n x}{\left ( 1+x^2 \right )^m}\, {\rm d}x = {\rm B}^{(n)} \left ( \frac{1}{2}, m- \frac{1}{2} \right )$$
However, we hardly know anything about the high order derivatives of the Beta function. What is known however are the following recursive formulae:
- $$ \Gamma^{(n+1)} (1)= -\gamma \Gamma^{(n)} (1) +n ! \sum_{k=1}^{n} \frac{(-1)^{k+1}}{\left ( n-k \right )!} \zeta(k+1)\Gamma^{(n-k)} (1)$$
- $$\Gamma^{(n+1)}\left ( \frac{1}{2} \right )= -\left ( \gamma +2 \log 2 \right ) \Gamma^{(n)} \left ( \frac{1}{2} \right ) +n ! \sum_{k=1}^{n}\frac{(-1)^{k+1}}{\left ( n-k \right )!} \left ( 2^{k+1}-1 \right )\zeta(k+1) \Gamma^{(n-k)}\left ( \frac{1}{2} \right )$$
So, the best we can do for the moment for the third integral is to leave it that way.
Imagination is much more important than knowledge.
- Tolaso J Kos
- Administrator
- Posts: 866
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Re: Three similar improper integrals
From the paper above we also get that if $n \in \mathbb{N}$ and
$$I(n)= \int_{0}^{\infty} \frac{\left ( \log t \right )^n}{(1+t)\sqrt{t}} \, {\rm d}t $$
then:
$$I(n)= \left\{\begin{matrix}
0 &, &n \; \text{odd} \\
\displaystyle2\sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \Gamma^{(2n-k)} \left ( \frac{1}{2} \right )\Gamma^{(k)} \left ( \frac{1}{2} \right ) + (-1)^n \binom{2n}{n}\left [ \Gamma^{(n)} \left ( \frac{1}{2} \right ) \right ]^2& , & n \; \text{even}
\end{matrix}\right. $$
$$I(n)= \int_{0}^{\infty} \frac{\left ( \log t \right )^n}{(1+t)\sqrt{t}} \, {\rm d}t $$
then:
$$I(n)= \left\{\begin{matrix}
0 &, &n \; \text{odd} \\
\displaystyle2\sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \Gamma^{(2n-k)} \left ( \frac{1}{2} \right )\Gamma^{(k)} \left ( \frac{1}{2} \right ) + (-1)^n \binom{2n}{n}\left [ \Gamma^{(n)} \left ( \frac{1}{2} \right ) \right ]^2& , & n \; \text{even}
\end{matrix}\right. $$
Imagination is much more important than knowledge.
Re: Three similar improper integrals
A relative post can be found here.
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$
- Tolaso J Kos
- Administrator
- Posts: 866
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Re: Three similar improper integrals
It is nice to share ideas with people around the world just to realize that you are ignoring the obvious. All we need for this is Liebniz's General Rule thus the last integral boils down to:Grigorios Kostakos wrote: 3.$\displaystyle \int_{0}^{+\infty}\frac{\log^n{x}}{(1+x^2)^m}\,{\rm{d}}x$
$$\int_{0}^{\infty} \frac{\log^n x}{\left ( 1+x^2 \right )^m}\, {\rm d}x = {\rm B}^{(n)} \left ( \frac{1}{2}, m- \frac{1}{2} \right )= \frac{1}{m^2 \Gamma(m)}\sum_{k=0}^{n} \binom{n}{k} \Gamma^{(k)} \left ( \frac{1}{2} \right )\Gamma^{(n-k)} \left ( m- \frac{1}{2} \right )$$
Then we are using the reduction formula for $\Gamma^{(n)} \left( \frac{1}{2}\right)$ which I quoted above:
Tolaso J Kos wrote: $$\Gamma^{(n+1)}\left ( \frac{1}{2} \right )= -\left ( \gamma +2 \log 2 \right ) \Gamma^{(n)} \left ( \frac{1}{2} \right ) +n ! \sum_{k=1}^{n}\frac{(-1)^{k+1}}{\left ( n-k \right )!} \left ( 2^{k+1}-1 \right )\zeta(k+1) \Gamma^{(n-k)}\left ( \frac{1}{2} \right )$$
Imagination is much more important than knowledge.
Create an account or sign in to join the discussion
You need to be a member in order to post a reply
Create an account
Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute
Sign in
Who is online
Users browsing this forum: No registered users and 0 guests