$$x_{n+1}=\sqrt {\frac{1}{2} ( 1+x_n)}$$

Evaluate the limit $\mathscr{L}=\lim \limits_{n \rightarrow +\infty} \cos \left ( \frac{\sqrt{1-\xi^2}}{\prod \limits_{k=1}^{n} x_k} \right )$.

Welcome to mathimatikoi.org forum; Enjoy your visit here.

- Tolaso J Kos
- Administration team
**Articles:**2**Posts:**854**Joined:**Sat Nov 07, 2015 6:12 pm**Location:**Larisa-
**Contact:**

Let $\xi \in (-1, 1)$. Define a sequence $\{x_n\}_{n=1}^{\infty}$ as:

$$x_{n+1}=\sqrt {\frac{1}{2} ( 1+x_n)}$$

Evaluate the limit $\mathscr{L}=\lim \limits_{n \rightarrow +\infty} \cos \left ( \frac{\sqrt{1-\xi^2}}{\prod \limits_{k=1}^{n} x_k} \right )$.

$$x_{n+1}=\sqrt {\frac{1}{2} ( 1+x_n)}$$

Evaluate the limit $\mathscr{L}=\lim \limits_{n \rightarrow +\infty} \cos \left ( \frac{\sqrt{1-\xi^2}}{\prod \limits_{k=1}^{n} x_k} \right )$.

Hidden Message- Answer

I think you need to give an initial value though.

- Grigorios Kostakos
- Founder
**Articles:**0**Posts:**460**Joined:**Mon Nov 09, 2015 1:36 am**Location:**Ioannina, Greece

It's not necessary! Obviously assuming that $x_1\stackrel{(*)}{>}-1$, in any case the sequence $\{x_n\}_{n=1}^{\infty}$ is monotonic and bounded.dr.tasos wrote:I think you need to give an initial value though.

$(*)$ If $x_1=-1$, then the sequence is the zero sequence and the fraction $\frac{\sqrt{1-\xi^2}}{\prod \limits_{k=1}^{n} x_k}$ has no meaning.

Grigorios Kostakos

- Tolaso J Kos
- Administration team
**Articles:**2**Posts:**854**Joined:**Sat Nov 07, 2015 6:12 pm**Location:**Larisa-
**Contact:**

Unfortunately,

I do not remember where I had found this particular exercise and since I cannot recover the link this means I am unable to check for any particular typos that may have occured during typesetting.

Whoops!! Mea Culpa!

I do not remember where I had found this particular exercise and since I cannot recover the link this means I am unable to check for any particular typos that may have occured during typesetting.

Whoops!! Mea Culpa!

- Grigorios Kostakos
- Founder
**Articles:**0**Posts:**460**Joined:**Mon Nov 09, 2015 1:36 am**Location:**Ioannina, Greece

Tolaso J Kos wrote:...I am unable to check for any particular typos that may have occured during typesetting...

There is some problem with limit $L$ : To be equal to $\xi$ (as been given), $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k$ must exists in $\mathbb{R}$ (otherwise, if $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k$ does not exists, then the limit in question does not exists also. If $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k=\infty$ then the limit in question equals to $1$).

So let $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k=a$. Then

\begin{align*}

\mathop{\lim}\limits_{n\to+\infty} \cos \Big(\tfrac{\sqrt{1-\xi^2}}{\prod_{k=1}^{n} x_k} \Big)&= \cos \Big(\mathop{\lim}\limits_{n\to+\infty}\tfrac{\sqrt{1-\xi^2}}{\prod_{k=1}^{n} x_k} \Big)\\

&=\cos \Big(\tfrac{\sqrt{1-\xi^2}}{\mathop{\lim}\limits_{n\to+\infty}\prod_{k=1}^{n} x_k} \Big)\\

&=\cos \Big(\tfrac{\sqrt{1-\xi^2}}{α} \Big)=\xi\quad\Rightarrow\\

a&=\frac{\arccos\xi}{\sqrt{1-\xi^2}}\,.

\end{align*}

Because the sequence $\{x_n\}$ is not related to $\xi$, the same must hold for the $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k$. Contradiction.

So, must exists a typo somewhere in the exercise.

Grigorios Kostakos