Page 1 of 1

Limit and number theory

Posted: Tue Nov 10, 2015 4:08 pm
by Tolaso J Kos
Evaluate the limit:

$$\lim_{n \rightarrow +\infty} \frac{1}{n^2} \sum_{k \leq n} \varphi(k)$$

where $\varphi$ is the Euler's function.

Re: Limit and number theory

Posted: Tue Nov 10, 2015 4:13 pm
by Grigorios Kostakos
We use that \[\displaystyle\mathop{\sum}\limits_{k=1}^n\varphi(k)=\frac{3n^2}{\pi^2}+{\cal{O}}\big(n\log^{2/3}n\,\log^{4/3}(\log{n})\big)\]
Because \[\displaystyle\mathop{\lim}\limits_{n\to+\infty}\frac{1}{n^2}\,{\cal{O}}\big(n\log^{2/3}n\,\log^{4/3}(\log{n})\big)=0\quad (*)\] we have that
\begin{align*}
\displaystyle\mathop{\lim}\limits_{n\to+\infty}\frac{1}{n^2}\mathop{\sum}\limits_{k=1}^n\varphi(k)&=\frac{3}{\pi^2}+\mathop{\lim}\limits_{n\to+\infty}\frac{1}{n^2}\,{\cal{O}}\big(n\log^{2/3}n\,\log^{4/3}(\log{n})\big)\\
&=\frac{3}{\pi^2}+0\\
&=\frac{3}{\pi^2}\,.
\end{align*}


\((*)\) Left as an exercise.