It is currently Thu Sep 19, 2019 5:37 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 8 posts ] 
Author Message
 Post subject: Nice integral problem
PostPosted: Thu Jan 07, 2016 12:27 am 

Joined: Thu Dec 10, 2015 1:58 pm
Posts: 59
Location: India
Calculate the integral: $$\int_{0}^{\infty}\left(\frac{x}{e^{x}-e^{-x}}-\frac{1}{2}\right)\frac{\,dx}{x^2}$$


Top
Offline Profile  
Reply with quote  

PostPosted: Thu Jan 07, 2016 12:59 am 

Joined: Sun Dec 13, 2015 2:26 pm
Posts: 56
My solution is not very glamorous.

Write the integrand as:

$$1/2\int_{0}^{\infty}\left(\frac{1}{\sinh(x)}-\frac{1}{x}\right)\cdot \frac{1}{x}dx$$

Consider the Dirichlet Lambda Function.

For $s>1$, the DLF is defined as :

$$\lambda(s) = \sum_{k=0}^{\infty}\frac{1}{(2k+1)^{s}}=\left(1-\frac{1}{2^{s}}\right)\zeta(s)=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{\sinh(x)}dx$$.

But, in the domain $0<s<1$, it can also be written as:

$$\lambda(s)=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\left(\frac{1}{\sinh(x)}-\frac{1}{x}\right)^{s-1}dx................[1]$$

Now, we can write:

$$2\Gamma(s)\lambda(s)=2\Gamma(s)\left(1-\frac{1}{2^{s}}\right)\zeta(s)$$

As can be seen from [1] as well, if we take the limit of this as $s\to 0$, then we find it converges to $$-\ln(2)$$.

Don't forget the 1/2 from in front of the integral sign in the original integral, then we finally have our result: $$\boxed{-1/2\ln(2)}$$

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I found a rather obscure identity in my notes. I have not derived it. It works in a jiffy here:

$$\int_{0}^{\infty}\left(\frac{1}{\sinh(x)}-\frac{1}{x}\right)\frac{x}{x^{2}+4\pi^{2}s^{2}}=1/2\left[\psi\left(s+1/2\right)-\psi(s+1)\right]$$

Now, let $s=0$ and we have.......................$-\ln(2)$


Top
Offline Profile  
Reply with quote  

PostPosted: Thu Jan 07, 2016 6:39 pm 

Joined: Thu Dec 10, 2015 1:58 pm
Posts: 59
Location: India
Cool C! :clap2: I didn't notice the connection between the integral and Dirichlet's Lambda Function.

\begin{align*}\int_0^{\infty} \left(\frac{x}{e^{x}-e^{-x}} - \frac{1}{2}\right)\frac{\,dx}{x^2}&= \int_0^{\infty}\int_0^{\infty} \left(\frac{x}{e^{x}-e^{-x}} - \frac{1}{2}\right)se^{-sx}\,ds\,dx\\&= \frac{1}{2}\int_0^{\infty} \int_0^{\infty} \frac{2xe^{-x} + e^{-2x} - 1}{1-e^{-2x}}se^{-sx}\,dx\,ds\\&= \frac{1}{2}\int_0^{\infty} \int_0^{\infty} s(2xe^{-(1+s)x} + e^{-(2+s)x} - e^{-sx})\sum\limits_{n=0}^{\infty} e^{-2nx}\,dx\,ds\\&= \frac{1}{2}\int_0^{\infty} s\sum\limits_{n=0}^{\infty}\left(\frac{2}{(1+s+2n)^2} + \frac{1}{2+s+2n} - \frac{1}{s+2n}\right)\,ds\\&= \frac{1}{2}\int_0^{\infty} \sum\limits_{n=0}^{\infty} \left(\frac{2}{1+s+2n} - \frac{2(2n+1)}{(1+s+2n)^2}+\frac{2n}{s+2n} - \frac{2n+2}{s+2n+2}\right)\,ds\\&= -\lim\limits_{N\to \infty}\sum\limits_{n=0}^{N}\left(\log (1+2n) + \frac{(2n+1)}{2n+1}+n\log (2n) - (n+1)\log (2n+2)\right)\\&= -\lim\limits_{N \to \infty} \log \frac{(2N+1)!e^{N+1}}{2^{2N+1}N!(N+1)^{N+1}}\\&= -\frac{1}{2}\log 2 \qquad(\text{by Stirling's approximation})\end{align*}


Top
Offline Profile  
Reply with quote  

PostPosted: Thu Jan 07, 2016 9:10 pm 

Joined: Sun Dec 13, 2015 2:26 pm
Posts: 56
Nice use of the partial sum/stirling thing there at the end RD. I like. :)


Top
Offline Profile  
Reply with quote  

PostPosted: Sat Jan 09, 2016 2:11 pm 
Administrator
Administrator
User avatar

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Yet another solution (that is not mine) and I found in my notes.

We note that the integrand function is even , hence:

\begin{align*}
\int_{0}^{\infty}\left ( \frac{x}{e^x-e^{-x}} - \frac{1}{2} \right )\frac{{\rm d}x}{x^2} &=\frac{1}{2}\int_{-\infty}^{\infty}\left ( \frac{xe^x}{e^{2x}-1} - \frac{1}{2} \right )\frac{{\rm d}x}{x^2} \\
&=\frac{1}{2}\int_{-\infty}^{\infty}\frac{2xe^x -e^{2x}+1}{2\left ( e^{2x}-1 \right )x^2}\, {\rm d}x
\end{align*}

Consider the function $\displaystyle f(z)= \frac{2ze^z -e^{2z}+1}{2\left ( e^{2z}-1 \right )z^2}$ and $f(0)= -\frac{1}{12}$. Since $\lim \limits_{z \rightarrow 0+} f(z)= -\frac{1}{12}$ then the function will be analytic in the upper half plane and will still have simple poles at $z_k = i \pi \kappa, \; \kappa =1, 2,3, \dots$.

We can easily establish the residue:

$$\mathfrak{Res}\left ( f(z); i \pi \kappa \right )=\frac{(-1)^{\kappa+1}i}{2\pi \kappa}$$

Now we are integrating $f$ on a semicircle located at the UHP. We can easily see that the contour integral over the arc vanishes as the radius $R \rightarrow +\infty$, since:

\begin{align*}
\left | f(z) \right | &= \frac{1}{2R^2}\cdot \frac{\left | 2ze^z-e^{2z}+1 \right |}{\left | e^{2z}-1 \right |}\\
& \! \! \! \! \! \! \! \! \! \! \! \overset{z=Re^{i\theta}, \; \theta \in [0, \pi]}{\leq } \frac{1}{2R^2}\frac{2Re^R+e^{2R}+1}{e^{2R}-1} \xrightarrow{R \rightarrow +\infty}0
\end{align*}

Hence , if $\gamma$ denotes the circle then:

\begin{align*}
\oint_{\gamma}f(z)\, {\rm d}z &=2\pi i \sum_{\kappa=1}^{\infty}\frac{(-1)^{\kappa+1}i}{2\pi \kappa} \\
&=- \sum_{\kappa=1}^{\infty}\frac{(-1)^{\kappa+1}}{\kappa} \\
&= - \ln 2
\end{align*}

Hence if $\mathcal{J}$ denotes the initial integral then:

$$\mathcal{J}=\frac{1}{2}\int_{-\infty}^{\infty}\frac{2xe^x -e^{2x}+1}{2\left ( e^{2x}-1 \right )x^2}\, {\rm d}x = -\frac{\ln 2}{2}$$

as proven in the previous solutions.

_________________
Imagination is much more important than knowledge.
Image


Top
Offline Profile  
Reply with quote  

PostPosted: Sat Jan 09, 2016 3:00 pm 

Joined: Sun Dec 13, 2015 2:26 pm
Posts: 56
Cool, T :)


Top
Offline Profile  
Reply with quote  

PostPosted: Tue Mar 01, 2016 3:19 pm 
Administrator
Administrator
User avatar

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Well yesterday I encountered a problem where I had to use the Mellin Transform of $\frac{1}{\sinh ax}$. I was remembering this post , but I had to make a little adjustment to the output.

What I discovered is the following formula:

$$\int_{0}^{\infty}\frac{x^{s-1}}{\sinh ax} \, {\rm d}x = \frac{2}{a^2}\Gamma(s) \lambda(s) , \;\; a>0, \;\; s>1$$

I don't think that it is too difficult to prove. For example , one might begin using the series expansion of $\frac{1}{\sinh ax}$ which is quite easy to get. Then interchange integral and sum and I believe the result falls immediately.

I'll leave the derivation to the reader. I also guess that in the domain $0<s<1$ we'll have a similar formula. C, what do you think?

_________________
Imagination is much more important than knowledge.
Image


Top
Offline Profile  
Reply with quote  

PostPosted: Tue Mar 01, 2016 10:27 pm 

Joined: Sun Dec 13, 2015 2:26 pm
Posts: 56
Yeah, T, I would say that is probably the case.

There are some fun integrals associated with this one.

One may derive the integral you mention by using Zeta, so it is more than likely safe to assume we can continue it to $0<s<1$.


Like you said, showing the one you mention can be done using geometric series and the 'e' series for sinh.

There is a similar series for cosh:

$$\int_{0}^{\infty}\frac{x^{s-1}}{\cosh(ax)}dx=\frac{2\Gamma(s)}{(2a)^{s}}\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n+1)^{s}}$$

There's that Dirichlet Lambda thing again.


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 8 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: SemrushBot and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net