It is currently Thu Jul 18, 2019 1:23 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 6 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: $\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx$Posted: Sat Apr 08, 2017 9:35 am
 Team Member

Joined: Mon Nov 09, 2015 1:36 am
Posts: 460
Location: Ioannina, Greece
Evaluate $\displaystyle\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx\,.$

_________________
Grigorios Kostakos

Top

 Post subject: Re: $\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx$Posted: Wed May 03, 2017 7:31 pm

Joined: Tue May 10, 2016 3:56 pm
Posts: 33
Let the proposed integral be $I$. Notice that
$$I = 2\int_0^1\log(1-x)\log(1+x)\,dx.$$
Integrating by parts yields
\begin{eqnarray*}
I & = & -2\int_0^1\log(1-x)\log(1+x)\,d(1-x)\\
& = & 2\int_0^1(1-x)\left(\frac{\log(1-x)}{1+ x} - \frac{\log(1+x)}{1- x}\right)\,dx\\
& = & 2\int_0^1\frac{1-x}{1+x}\,\log(1-x)\,dx - 2\int_0^1\log(1+x)\,dx.
\end{eqnarray*}
It is easy to see that
$$\int_0^1\log(1+x)\,dx = -1 + 2\log2.$$
Let $t = (1-x)/(1+x)$. Then
$$\int_0^1\frac{1-x}{1+x}\,\log(1-x)\,dx = \int_0^1\frac{2t}{(1+t)^2}[\log2 + \log t - \log(1 + t)]\,dt.$$
In view of $d(1/(1 + t)) = - dt/(1+t)^{2}$, integrating by parts gives
$$\int_0^1\frac{2t}{(1+t)^2}\,dt = -1 +2\log2;$$
$$\int_0^1\frac{2t\log t}{(1+t)^2}\,dt = -\frac{\pi^2}{6} +2\log2;$$
$$\int_0^1\frac{2t\log(1+t)}{(1+t)^2}\,dt = -1 + \log2 + \log^22.$$
In summary, we find that
$$I = 4 -4\log2 + 2\log^22 - \frac{\pi^2}{3}.$$

Top

 Post subject: Re: $\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx$Posted: Wed May 03, 2017 7:50 pm
 Team Member

Joined: Mon Nov 09, 2015 1:36 am
Posts: 460
Location: Ioannina, Greece
Nice solution mathofusva! Here is a second one:

\begin{align*}
I&=\displaystyle\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx\\
&=\int_{-1}^1 \log(1-x)\,\Big(\log2+\mathop{\sum}\limits_{n=1}^{+\infty}\frac{(-1)^{n-1}}{2^n\,n}\,(x-1)^n\Big)\, dx\\
&=\log2\int_{-1}^1 \log(1-x)\,dx+\int_{-1}^1 \log(1-x)\,\mathop{\sum}\limits_{n=1}^{+\infty}\frac{(-1)^{n-1}}{2^n\,n}\,(x-1)^n\, dx\\
&=\log2\,\big(2\log2-2\big)+\mathop{\sum}\limits_{n=1}^{+\infty}\Big(\frac{(-1)^{n-1}}{2^n\,n}\int_{-1}^1(x-1)^n\, \log(1-x)\, dx\Big)\\
&\mathop{=\!=\!=\!=\!=\!=}\limits^{\begin{subarray}{c}
{t\,=\,1-x}\\
{dx\,=\,-dt} \\
\end{subarray}}\,2\log2\,\big(\log2-1\big)+\mathop{\sum}\limits_{n=1}^{+\infty}\Big(\frac{(-1)^{n-1}}{2^n\,n}\int_{0}^2(-t)^n\, \log{t}\, dt\Big)\\
&=2\log2\,\big(\log2-1\big)+\mathop{\sum}\limits_{n=1}^{+\infty}\Big(\frac{(-1)^{n-1}}{2^n\,n}\int_{0}^2(-1)^nt^n \log{t}\, dt\Big)\\
&=2\log2\,\big(\log2-1\big)-\mathop{\sum}\limits_{n=1}^{+\infty}\Big(\frac{1}{2^n\,n}\int_{0}^2t^n\log{t}\, dt\Big)\\
&=2\log2\,\big(\log2-1\big)-\mathop{\sum}\limits_{n=1}^{+\infty}\Big(\frac{1}{2^n\,n}\,\frac{2^{n+1}\,(\log2-1+n)}{(n+1)^2}\Big)\\
&=2\log2\,\big(\log2-1\big)-2\mathop{\sum}\limits_{n=1}^{+\infty}\Big(\frac{\log2-1+n\log2}{n\,(n+1)^2}\Big)
\\
&=2\log2\,\big(\log2-1\big)-2\,\big(\log2-1\big)\mathop{\sum}\limits_{n=1}^{+\infty}\frac{1}{n\,(n+1)^2}+2\log2\mathop{\sum}\limits_{n=1}^{+\infty}\frac{1}{(n+1)^2}\\
&=2\log2\,\big(\log2-1\big)-2\,\big(\log2-1\big)\bigg(\cancelto{1}{\mathop{\sum}\limits_{n=1}^{+\infty}\frac{1}{n\,(n+1)}}-\mathop{\sum}\limits_{n=1}^{+\infty}\frac{1}{(n+1)^2}\bigg)+2\log2\mathop{\sum}\limits_{n=1}^{+\infty}\frac{1}{(n+1)^2}\\
&=2\log2\,\big(\log2-1\big)-2\,\big(\log2-1\big)\bigg(1+1-\mathop{\sum}\limits_{n=1}^{+\infty}\frac{1}{n^2}\bigg)+2\log2\bigg(-1+\mathop{\sum}\limits_{n=1}^{+\infty}\frac{1}{n^2}\bigg)\\
&=2\log2\,\big(\log2-1\big)-2\,\big(\log2-1\big)\Big(2-\frac{\pi^2}{6}\Big)-2\log2\,\Big(\frac{\pi^2}{6}-1\Big)\\
&=2\,\big(\log^22-2\log2+2\big)-\frac{\pi^2}{3}\,.
\end{align*}

_________________
Grigorios Kostakos

Top

 Post subject: Re: $\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx$Posted: Thu May 04, 2017 1:20 pm

Joined: Sat Nov 14, 2015 6:32 am
Posts: 159
Location: Melbourne, Australia
Hey y'all,

something general holds, namely this:

$$\int_0^{1/t} \ln(1-x) \ln(1-t x)\; {\rm d}x = \frac{2}{t} + \frac{1-t}{t} \left[\ln \left(\frac{t}{t-1}\right) - {\rm Li}_2\left(\frac{t}{t-1}\right)\right]$$

For $t=-1$ we get half the result of what we are seeking. Derivation is left to the reader.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Post subject: Re: $\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx$Posted: Sat Jan 13, 2018 12:40 pm

Joined: Sat Nov 14, 2015 6:32 am
Posts: 159
Location: Melbourne, Australia
Grigorios Kostakos wrote:
Evaluate $\displaystyle\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx\,.$

Yet another solution. Making use of the symmetry, we get that:

\begin{align*}
\int_{-1}^{1} \log(1-x) \log(1+x) \, {\rm d}x &= 2 \int_{0}^{1} \log(1-x)\log(1+x)\, {\rm d}x \\
&=2\int_{0}^{1} \log(1-x) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} \, {\rm d}x \\
&= 2\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \int_{0}^{1} x^n \log \left ( 1-x \right ) \, {\rm d}x\\
&= -2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \mathcal{H}_{n+1}}{n\left ( n+1 \right )} \\
&=-2 \sum_{n=1}^{\infty} (-1)^{n+1} \mathcal{H}_{n+1} \left [ \frac{1}{n} - \frac{1}{n+1} \right ] \\
&= -2 \sum_{n=1}^{\infty} (-1)^{n+1} \left [\frac{ \left ( \mathcal{H}_n+ \frac{1}{n+1} \right )}{n} - \frac{\mathcal{H}_{n+1}}{n+1} \right ] \\
&= -2 \sum_{n=1}^{\infty} \left [ \frac{(-1)^{n+1} \mathcal{H}_n}{n} + \frac{(-1)^{n+1}}{n(n+1)} + \frac{(-1)^{n+1} \mathcal{H}_{n+1}}{n+1}\right ] \\
&= -2\left [ \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \mathcal{H}_n}{n} + \cancelto{2\log 2-1}{\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}} -\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \mathcal{H}_{n+1}}{n+1} \right ] \\
&=-2 \left [ \left ( \frac{\zeta(2)}{2} - \frac{\log^2 2}{2} \right ) + \left ( 2 \log 2 -1 \right ) + \sum_{n=2}^{\infty} \frac{(-1)^n \mathcal{H}_n}{n} \right ] \\
&= -2 \left [ \frac{\zeta(2)}{2} - \frac{\log^2 2}{2} + \left ( 2 \log 2- 1 \right ) - \left (-\frac{\zeta(2)}{2}+ \frac{\log^2 2}{2} +1 \right ) \right ] \\
& = -2 \left ( \zeta(2) - \log^2 2 + 2 \log 2 -2 \right )
\end{align*}

where we used the results

\begin{align}
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \mathcal{H}_n}{n} = \frac{\zeta(2)}{2} - \frac{\log^2 2}{2}&\\
\int_{0}^{1} x^n \log(1-x) \, {\rm d}x = -\frac{\mathcal{H}_{n+1}}{n+1} &
\end{align}

where $\mathcal{H}_n$ denotes the $n$ - th harmonic number.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Post subject: Re: $\int_{-1}^1 \log(1-x)\,\log(1+x)\, dx$Posted: Thu Jun 28, 2018 4:47 pm

Joined: Tue May 10, 2016 3:56 pm
Posts: 33
Here is another way: the identity

$$(a+b)^2 - (a-b)^2 = 4ab$$

converts the proposed integral into

$$\frac{1}{4}\left(\int_{-1}^1\,\ln^2(1-x^2)\,dx - \int_{-1}^1\,\ln^2\left(\frac{1+x}{1-x}\right)\,dx\right).$$

Here both integrals are easy to work out.

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 6 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: SemrushBot and 0 guests

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta