It is currently Thu Jul 18, 2019 1:23 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 4 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: [TUT] Special values on the polylogarithm functionsPosted: Wed Sep 28, 2016 8:41 pm

Joined: Sat Nov 14, 2015 6:32 am
Posts: 159
Location: Melbourne, Australia
1. $\displaystyle \Im\left [ {\rm Li}_2 (i) \right ] =\mathcal{G}$ since in general

\begin{align*}
{\rm Li}_2 (iz) &= - \int_{0}^{z} \frac{\log (1-it)}{t} \, {\rm d}t \\
&= -\int_{0}^{z} \frac{\log \left [ \left ( 1+t^2 \right )^{1/2} e^{-i \arctan t} \right ]}{t} \, {\rm d}t\\
&= -\frac{1}{2} \int_{0}^{z}\frac{\log \left ( 1+t^2 \right )}{t} \, {\rm d}t + i \int_{0}^{z} \frac{\arctan t}{t} \, {\rm d}t\\
&= \frac{1}{4}{\rm Li}_2 \left ( -z^2 \right ) + i {\rm Ti}_2 (z)
\end{align*}

Now for $z=1$ we have that ${\rm Ti}_2(1)=\mathcal{G}$ and thus the first equation follows.

2. $\displaystyle \Im \left [ {\rm Li}_2 \left ( 1+i \right ) \right ] = \mathcal{G} + \frac{\pi \log 2}{4}$. This pretty much follows from the fundamental equation the dilogarithm function satisfies, i.e

$${\rm Li}_2(z)+ {\rm Li}_2(1-z) = \zeta(2) - \log z \log (1-z)$$

For $z=-i$ we get the following

$${\rm Li}_2 \left ( -i \right ) + {\rm Li}_2 \left ( 1+i \right ) = \zeta(2) - \log (-i) \log (1+i)$$

Taking imaginary parts as well as into account the following fact

\begin{align*}
{\rm Li}_2 (-i) + {\rm Li}_2 \left ( 1+i \right ) &= \zeta(2) - \log (-i) \log (1+i) \\
&=\zeta(2) -\frac{\pi^2}{8} +\frac{i \pi \log 2 }{4}
\end{align*}

yields the result , since $\Im \left({\rm Li}_2(-i) \right)=-\mathcal{G}$.

3. $\displaystyle \Im \left [ {\rm Li}_2 \left ( \frac{1+i}{2} \right ) \right ] = \mathcal{G} - \frac{\pi \log 2}{8}$.

Well, we are using another fundamental relation of the dilog, namely:

$${\rm Li}_2 (z) +{\rm Li}_2 \left ( -\frac{z}{1-z} \right ) = - \frac{1}{2} \log^2 \left ( 1-z \right ) \; , \quad z \notin [1, +\infty)$$

as well as the trivial results

\begin{align}
{\rm Li}_2 \left ( e^{i \theta} \right ) &= {\rm Sl}_2 (\theta) + i {\rm Cl}_2 (\theta) \\
{\rm Sl}_2(\theta)&= \sum_{n=1}^{\infty} \frac{\sin n\theta}{n^2} \\
{\rm Cl}_2(\theta)&= \sum_{n=1}^{\infty} \frac{\cos n \theta}{n^2} = \zeta(2) - \frac{\pi \theta }{2} + \frac{\theta^2}{4}
\end{align}

(Note: Equation $(6)$ is just a Fourier series. Well, $\displaystyle \sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = \frac{\pi-\theta}{2} , \; \theta \in (0, 2\pi)$. Since the convergence of that series is uniform we can integrate and get the result. )

Now for $z=\frac{1}{2} + \frac{i}{2}$ we get that

\begin{align*}
{\rm Li}_2 \left ( \frac{1+i}{2} \right ) + {\rm Li}_2 (-i) &= -\frac{1}{2} \log^2 \left ( 1-\frac{1+i}{2} \right )\\
&=\frac{\pi^2}{32} - \frac{\log^2 2}{8} - \frac{i \pi \log 2}{8}
\end{align*}

Taking imaginary part yields the result. As a side note $\displaystyle \Im \left [ {\rm Li}_2 \left ( \frac{1-i}{2} \right ) \right ] = -\mathcal{G} + \frac{\pi \log 2}{8}$.

Note: Did you think that these special values had no real part? Well, you're mistaken. Here there are:

\begin{align}
\Re \left ( {\rm Li}_2 (i) \right ) &= - \frac{\pi^2}{48}\\
\Re \left ( {\rm Li}_2(-i) \right )&= -\frac{\pi^2}{48}\\
\Re \left [ {\rm Li}_2 \left ( \frac{1+i}{2} \right ) \right ]&= \frac{5\pi^2}{96} - \frac{\log^2 2}{8} \\
\Re \left [ {\rm Li}_2 \left ( \frac{1-i}{2} \right ) \right ] &=\frac{5 \pi^2}{96} - \frac{\log^2 2}{8}
\end{align}

This post was migrated from here.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Posted: Wed Sep 28, 2016 9:04 pm

Joined: Sat Nov 14, 2015 6:32 am
Posts: 159
Location: Melbourne, Australia
Based on the above fact here are some exercises that are left to the reader.

1. Prove that:

$$\Im\operatorname{Li}_2 \left[\left(i\left(2\pm\sqrt3\right)\right) \right] =\frac{2 \mathcal{G}}{3}-\frac{\pi\,(2\pm3)}{12}\ln\left(2-\sqrt3\right)$$

(Hint: Use another great equation the dilogarithm satisfies:

$$\operatorname{Li}_2(z)+\operatorname{Li}_2\left(\frac{1}{z} \right)=-\frac{\pi^2}{6}-\frac{\ln^2(-z)}{2}$$

as well as the very known fact $\displaystyle \Re (z)=\frac{z+\bar{z}}{2}$. )

2. Prove that:

$$\Re\left [ {\rm Li}_2 \left ( 1 \pm i \sqrt{3} \right ) \right ] = \frac{\pi^2}{24} - \frac{\log^2 2}{4} - \frac{1}{4} {\rm Li}_2 \left ( \frac{1}{4} \right )$$

(Hint: Apply equation $(1)$ along with the equation of ${\rm Li}_2(iz)$. )

3. Prove that:

$$\Re\left [ {\rm Li}_2 \left ( \frac{1}{2}+ \frac{i}{6} \right ) \right ] = \frac{7 \pi^2}{48} - \frac{\arctan^2 2}{3} - \frac{\arctan^2 3}{6} - \frac{1}{8} \log^2 \left ( \frac{18}{5} \right )$$

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Posted: Wed Sep 28, 2016 10:13 pm

Joined: Sat Nov 14, 2015 6:32 am
Posts: 159
Location: Melbourne, Australia
Now let us move on to the trilogarithm function. It is defined as $\displaystyle {\rm Li}_3 (z) = \sum_{n=1}^{\infty} \frac{z^n}{n^3}= \int_{0}^{z}\frac{{\rm Li}_2 (t)}{t} \, {\rm d}t$.

1. $\displaystyle {\rm Li}_3(i) = -\frac{3 \zeta(3)}{32} + i \; \frac{\pi^3}{32}$ since:

1st way:

\begin{align*}
{\rm Li}_3(i) &=\sum_{n=1}^{\infty} \frac{i^n}{n^3} \\
&= \sum_{ 0 \mod n} \frac{i^n}{n^3} + \sum_{1 \mod n} \frac{i^n}{n^3} + \sum_{2 \mod n} \frac{i^n}{n^3} +\sum_{3 \mod n} \frac{i^n}{n^3}\\
&= -\frac{3 \zeta(3)}{32} + i \; \frac{\pi^3}{32}
\end{align*}

2nd way: One of the most fundamental equations all polylogarithms obey to is:

$${\rm Li}_{n+1} (z) = \frac{z}{(-1)^n n!} \int_{0}^{1}\frac{\log^n t}{1-zt} \, {\rm d}t$$

For $z=i$ and $n =2$ we have that:

\begin{align*}
{\rm Li}_3 (i) &=\frac{i}{2} \int_{0}^{1} \frac{\log^2 t}{1-it} \, {\rm d}t \\
&= \frac{i}{2}\int_{0}^{1} \log^2 t \sum_{n=0}^{\infty} i^n t^n \, {\rm d}t\\
&= \frac{i}{2}\sum_{n=0}^{\infty} i^n \int_{0}^{1} t^n \log^2 t \, {\rm d}t\\
&= i \sum_{n=0}^{\infty} \frac{i^n}{\left ( n+1 \right )^3}\\
&= i \left ( 1 + \frac{i}{2^3} - \frac{1}{3^3} -\frac{i}{4^3} + \cdots \right ) \\
&= i\sum_{n=0}^{\infty} \frac{(-1)^n)}{\left ( 2n+1 \right )^3} -i^2 \sum_{n=1}^{\infty} \frac{(-1)^n}{8n^3} \\
&= -\frac{3 \zeta(3)}{32} + i \; \frac{\pi^3}{32}
\end{align*}

Now using the equation

$${\rm Li}_3(z) + {\rm Li}_3(-z) = \frac{1}{4} {\rm Li}_3\left ( z^2 \right )$$

we get that $\displaystyle {\rm Li}_3 (-i) = -\frac{3 \zeta(3)}{32} - i \; \frac{\pi^3}{32}$.

Note: Let $s \in \mathbb{N}$. Following the exact same procedure as before (or even easier) we get that:

$${\rm Li}_s \left ( \pm i \right ) = -2^{-s} \eta(s) \pm i \beta (s)$$

where $\eta, \; \beta$ are eta and beta Dirichlet functions respectively.

2. $\displaystyle \Re\left [ {\rm Li}_3 \left ( 1 \pm i \right ) \right ]= \frac{\pi^3 \log 2}{32} + \frac{35 \zeta(3)}{64}$.

Proof is left to the reader.

3. $\displaystyle \Re\left [ {\rm Li}_3 \left ( \frac{1+i}{2} \right ) \right ] = \frac{\log^3 2}{48} - \frac{5\pi^2 \log 2}{192} + \frac{35 \zeta(3)}{64}$.

Proof is left to the reader.

4. $\displaystyle \Im\left [ {\rm Li}_3 \left ( \frac{1\pm i}{\sqrt{2}} \right ) \right ] = \pm \frac{7 \pi^3}{256}$.

Proof is left to the reader.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Posted: Wed Sep 28, 2016 10:25 pm

Joined: Sat Nov 14, 2015 6:32 am
Posts: 159
Location: Melbourne, Australia
General notes on the polylogs.

Let $n \in \mathbb{N}$. Then ${\rm Li}_n$ is analytic and single valued on $\mathbb{D}= \mathbb{C} \setminus [1,+\infty)$ and note that this domain is symmetric with respect to the real axis. $g(z)=\overline{{\rm Li}_n(\overline{z})}$ is also analytic on the same domain and it coincides with ${\rm Li}_n$ on $(-1, 1)$. Thus:

$$\forall\,z\in \mathbb{D},\qquad {\rm Li}_n(z)=\overline{{\rm Li}_n(\overline{z})}$$

We now conclude that

\begin{align}
\Re\left [ {\rm Li}_n (z) \right ] &=\frac{1}{2}\left ( {\rm Li}_n(z) + \overline{{\rm Li}_n (z)} \right )= \frac{1}{2}\left ( {\rm Li}_n(z) + {\rm Li}_n (\bar{z}) \right )\\
\Im \left [ {\rm Li}_n (z) \right ]&=\frac{1}{2i} \left ( {\rm Li}_n(z) - \overline{{\rm Li}_n (z)} \right ) = \frac{1}{2i} \left ( {\rm Li}_n(z) - {\rm Li}_n (\bar{z}) \right )
\end{align}

This last identity $(13)$ can be used to prove what T. stated at the linked post:

$$\Re{ \left[{\rm Li}_{2}\left(\frac{1}{2}+iq\right) \right]}=\frac{{\pi}^{2}}{12}-\frac{1}{8}{\ln^2{\left(\frac{1+4q^2}{4}\right)}}-\frac{{\arctan^2{(2q)}}}{2}$$

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 4 posts ]

 All times are UTC [ DST ]

Mathimatikoi Online

Users browsing this forum: SemrushBot and 0 guests

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net