Alternating Beta sum

Calculus (Integrals, Series)
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Alternating Beta sum

#1

Post by Tolaso J Kos »

Evaluate the sum:

$$\mathcal{S}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n}{\rm B}\left ( \frac{1}{2}, \frac{n}{2} \right )$$
Answer
$\mathcal{S}=\frac{\pi^2}{8}$
Imagination is much more important than knowledge.
r9m
Posts: 59
Joined: Thu Dec 10, 2015 1:58 pm
Location: India
Contact:

Re: Alternating Beta sum

#2

Post by r9m »

\begin{align}\sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}B\left(\frac{1}{2},\frac{n}{2}\right) &= \sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\int_0^{1} (1-x)^{-1/2} x^{\frac{n}{2} - 1}\,dx\\&= \int_0^{1}\frac{(1-x)^{-1/2} \log \left(1+\sqrt{x}\right)}{x}\,dx\\&= 2\int_0^1 \frac{\log (1+x)}{x\sqrt{1-x^2}}\,dx\\&= 2\int_0^1 \frac{\log \left(1+\frac{2t}{1+t^2}\right)}{t}\,dt\\&= 4\int_0^1 \frac{\log (1+t)}{t}\,dt - 2\int_0^1 \frac{\log (1+t^2)}{t}\,dt\\&= 3\int_0^1 \frac{\log (1+t)}{t}\,dt = \frac{\pi^2}{4}\end{align}

Justifications:

$(2)$ We used $x\mapsto x^2$, $(3)$ we made the change in variable $\displaystyle x = \frac{2t}{1+t^2}$, $(5)$ We made the change of variable $t^2 \mapsto t$ in the second integral.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 45 guests