An inequality

General Mathematics
Post Reply
User avatar
Riemann
Posts: 178
Joined: Sat Nov 14, 2015 6:32 am
Location: Melbourne, Australia

An inequality

#1

Post by Riemann »

Let $x, y, z$ be positive real numbers. Prove that:

$$ \sqrt{\frac{x}{x+y}} + \sqrt{\frac{y}{y+z}} + \sqrt{\frac{z}{z+x}} \leq \frac{3}{\sqrt{2}}$$
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Tags:
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 1 guest