$$\mathcal{N}= \sqrt{1\cdot 2 \cdot 3 \cdot 4 \cdots (N-1)\cdot N}$$

is irrational.

Welcome to mathimatikoi.org forum; Enjoy your visit here.

- Tolaso J Kos
- Administrator
**Posts:**865**Joined:**Sat Nov 07, 2015 6:12 pm**Location:**Larisa-
**Contact:**

Let $N \in \mathbb{N} \mid N>1$. Prove that the number:

$$\mathcal{N}= \sqrt{1\cdot 2 \cdot 3 \cdot 4 \cdots (N-1)\cdot N}$$

is irrational.

$$\mathcal{N}= \sqrt{1\cdot 2 \cdot 3 \cdot 4 \cdots (N-1)\cdot N}$$

is irrational.

Hidden message

Let $p \leq N$ be the last prime. If we prove that between $p$ and $N$ does not exist a number that has $p$ as a factor we are done. So, we need to prove that $2p>N$. But this is exactly what Bertrand's postulate says.

$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

You need to be a member in order to post a reply

Not a member? register to join our community

Members can start their own topics & subscribe to topics

It’s free and only takes a minute

Users browsing this forum: No registered users and 0 guests