After separating the variables, I ended up with a general solution of the form:
$$u(r,\theta)=\sum_{n=0}^{\infty} r^n[A_n\cos(n\theta)+B_nsin(n\theta)]$$
How exactly do I use the boundary condition $u(\alpha,\theta)=1+3\sin(\theta)$ to determine the coefficients? (I think I know the answer intuitively, but I would like to see how it can be presented in a more mathematically formal way)
Laplace PDE on Disk - Poisson's Formula
-
- Posts: 20
- Joined: Wed Nov 15, 2017 12:37 pm
Laplace PDE on Disk - Poisson's Formula
- Attachments
-
- Screenshot_1.jpg (9.19 KiB) Viewed 17976 times
Create an account or sign in to join the discussion
You need to be a member in order to post a reply
Create an account
Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute
Sign in
Who is online
Users browsing this forum: No registered users and 0 guests