It is currently Tue Jun 18, 2019 2:24 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 5 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: A limitPosted: Fri Apr 08, 2016 1:25 pm

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Let $\xi \in (-1, 1)$. Define a sequence $\{x_n\}_{n=1}^{\infty}$ as:

$$x_{n+1}=\sqrt {\frac{1}{2} ( 1+x_n)}$$

Evaluate the limit $\mathscr{L}=\lim \limits_{n \rightarrow +\infty} \cos \left ( \frac{\sqrt{1-\xi^2}}{\prod \limits_{k=1}^{n} x_k} \right )$.

_________________
Imagination is much more important than knowledge.

Top

 Post subject: Re: A limitPosted: Wed Jul 26, 2017 12:33 pm

Joined: Tue Nov 24, 2015 7:47 pm
Posts: 13
I think you need to give an initial value though.

Top

 Post subject: Re: A limitPosted: Sun Jul 30, 2017 7:22 pm
 Team Member

Joined: Mon Nov 09, 2015 1:36 am
Posts: 460
Location: Ioannina, Greece
dr.tasos wrote:
I think you need to give an initial value though.
It's not necessary! Obviously assuming that $x_1\stackrel{(*)}{>}-1$, in any case the sequence $\{x_n\}_{n=1}^{\infty}$ is monotonic and bounded.

$(*)$ If $x_1=-1$, then the sequence is the zero sequence and the fraction $\frac{\sqrt{1-\xi^2}}{\prod \limits_{k=1}^{n} x_k}$ has no meaning.

_________________
Grigorios Kostakos

Top

 Post subject: Re: A limitPosted: Wed Aug 09, 2017 2:48 pm

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Unfortunately,

I do not remember where I had found this particular exercise and since I cannot recover the link this means I am unable to check for any particular typos that may have occured during typesetting.

Whoops!! Mea Culpa!

_________________
Imagination is much more important than knowledge.

Top

 Post subject: Re: A limitPosted: Wed Aug 09, 2017 3:16 pm
 Team Member

Joined: Mon Nov 09, 2015 1:36 am
Posts: 460
Location: Ioannina, Greece
Tolaso J Kos wrote:
...I am unable to check for any particular typos that may have occured during typesetting...

The above note comes after an interchange of private messages. Let's make it more clear:

There is some problem with limit $L$ : To be equal to $\xi$ (as been given), $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k$ must exists in $\mathbb{R}$ (otherwise, if $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k$ does not exists, then the limit in question does not exists also. If $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k=\infty$ then the limit in question equals to $1$).
So let $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k=a$. Then
\begin{align*}
\mathop{\lim}\limits_{n\to+\infty} \cos \Big(\tfrac{\sqrt{1-\xi^2}}{\prod_{k=1}^{n} x_k} \Big)&= \cos \Big(\mathop{\lim}\limits_{n\to+\infty}\tfrac{\sqrt{1-\xi^2}}{\prod_{k=1}^{n} x_k} \Big)\\
&=\cos \Big(\tfrac{\sqrt{1-\xi^2}}{\mathop{\lim}\limits_{n\to+\infty}\prod_{k=1}^{n} x_k} \Big)\\
a&=\frac{\arccos\xi}{\sqrt{1-\xi^2}}\,.
\end{align*}
Because the sequence $\{x_n\}$ is not related to $\xi$, the same must hold for the $\mathop{\lim}\limits_{n\to+\infty} \prod_{k=1}^{n} x_k$. Contradiction.

So, must exists a typo somewhere in the exercise.

_________________
Grigorios Kostakos

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 5 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta