Welcome to mathimatikoi.org forum; Enjoy your visit here.
$\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$
$\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$
Is the set $\mathcal{S} = \mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$ complete? Give a brief explanation.
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$
Re: $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$
No take a sequence $(2+\frac{\sqrt{2}}{n},\sqrt{2})\to (2,\sqrt{2})$
Re: $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$
Thank you Ram_1729. Exactly! It was an exam's question!
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$