Welcome to mathimatikoi.org forum; Enjoy your visit here.

## $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$

General Topology
Riemann
Articles: 0
Posts: 169
Joined: Sat Nov 14, 2015 6:32 am
Location: Melbourne, Australia

### $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$

Is the set $\mathcal{S} = \mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$ complete? Give a brief explanation.
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$
Ram_1729
Articles: 0
Posts: 4
Joined: Mon Dec 03, 2018 4:59 pm

### Re: $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$

No take a sequence $(2+\frac{\sqrt{2}}{n},\sqrt{2})\to (2,\sqrt{2})$
Riemann
Articles: 0
Posts: 169
Joined: Sat Nov 14, 2015 6:32 am
Location: Melbourne, Australia

### Re: $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$

Thank you Ram_1729. Exactly! It was an exam's question!
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$