A series

Calculus (Integrals, Series)
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

A series

#1

Post by Grigorios Kostakos »

Prove that:

$$\displaystyle\mathop{\sum}\limits_{n=1}^{+\infty}\biggl({\frac{1}{x+n}+\frac{1}{x+\frac{1}{2}+n}-\frac{2}{2x+n}}\biggr)=2\,\log2-\frac{2}{2x+1}\,,$$

or ,equivenantly, that:

$$\frac{1}{2}\displaystyle\mathop{\sum}\limits_{n=1}^{+\infty}\biggl({\frac{1}{x+n}+\frac{1}{x+\frac{1}{2}+n}-\frac{2}{2x+n+1}}\biggr)=\log2\,.$$
Grigorios Kostakos
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: A series

#2

Post by Tolaso J Kos »

Grigorios Kostakos wrote:Prove that:

$$\displaystyle\mathop{\sum}\limits_{n=1}^{+\infty}\biggl({\frac{1}{x+n}+\frac{1}{x+\frac{1}{2}+n}-\frac{2}{2x+n}}\biggr)=2\,\log2-\frac{2}{2x+1}\,,$$

or ,equivenantly, that:

$$\frac{1}{2}\displaystyle\mathop{\sum}\limits_{n=1}^{+\infty}\biggl({\frac{1}{x+n}+\frac{1}{x+\frac{1}{2}+n}-\frac{2}{2x+n+1}}\biggr)=\log2\,.$$
We are using the definition of the digamma here stating that:

$$\gamma+\psi(x)=\sum_{n=0}^{\infty}\left ( \frac{1}{n+1}-\frac{1}{x+n} \right )$$

along with the formulas:

\( (1) \quad \displaystyle \sum_{n=0}^{\infty}\frac{1}{n+x}=-\psi(x) \)
\( (2) \quad \displaystyle \Gamma (2x)=\frac{2^{2x-1}}{\sqrt{\pi}}\Gamma (x)\Gamma \left ( x+\frac{1}{2} \right ) \)

Differentiating \( (2) \) with respect to \( x \) (after we take logs) we get:
$$2\psi(2x)=2\ln 2+\psi(x)+\psi\left ( x+\frac{1}{2} \right )$$

We note that the sum can be expressed in digamma form, that is:

$$\sum_{n=0}^{\infty}\left ( \frac{1}{x+n}+\frac{1}{x+\frac{1}{2}+n}-\frac{2}{2x+n}\right )=2\psi(2x)-\psi(x)-\psi\left ( x+\frac{1}{2} \right )$$

Using the formula we derived above we get that:
$$\sum_{n=0}^{\infty}\left ( \frac{1}{x+n}+\frac{1}{x+\frac{1}{2}+n}-\frac{2}{2n+x}\right )=2\ln 2 \Leftrightarrow \sum_{n=1}^{\infty}\left ( \frac{1}{x+n}+\frac{1}{x+\frac{1}{2}+n}-\frac{2}{2n+x}\right )=2\ln 2-\frac{2}{2x+1}$$
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 47 guests