It is currently Tue Mar 19, 2019 10:18 pm


All times are UTC [ DST ]




Post new topic Reply to topic  [ 2 posts ] 
Author Message
PostPosted: Wed May 18, 2016 9:02 pm 

Joined: Sat Nov 14, 2015 6:32 am
Posts: 157
Location: Melbourne, Australia
Let a triangle have angles $A, B,C$. Evaluate the determinant:

$$\mathscr{D}=\begin{vmatrix}
1 &\sin A & \cot \frac{A}{2} \\\\
1& \sin B & \cot \frac{B}{2}\\\\
1& \sin C & \cot \frac{C}{2}
\end{vmatrix}$$

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$


Top
Offline Profile  
Reply with quote  

PostPosted: Sat Oct 22, 2016 9:54 am 

Joined: Sat Nov 14, 2015 6:32 am
Posts: 157
Location: Melbourne, Australia
We give a solution.

\begin{align*}
\mathcal{D} &=\begin{vmatrix}
1 & \sin A &\cot \frac{A}{2} \\\\
0 &\sin B - \sin A &\cot \frac{B}{2}- \cot \frac{A}{2} \\\\
0& \sin C - \sin B & \cot \frac{C}{2} - \cot \frac{B}{2}
\end{vmatrix} \\\\
&= \begin{vmatrix}
\sin B - \sin A & \cot \frac{B}{2}- \cot \frac{A}{2} \\\\
\sin C - \sin A & \cot \frac{C}{2} - \cot \frac{A}{2}
\end{vmatrix}\\\\
&= \begin{vmatrix}
2 \sin \frac{B-A}{2} \cos \frac{B+A}{2} &\frac{\sin \frac{B-A}{2}}{\sin \frac{B}{2} \sin \frac{A}{2}} \\\\
2 \sin \frac{C-A}{2} \cos \frac{C+A}{2} & \frac{\sin \frac{C-A}{2}}{\sin \frac{C}{2} \sin \frac{A}{2}}
\end{vmatrix}\\\\
&= 2 \sin \frac{B-A}{2} \sin \frac{C-A}{2} \begin{vmatrix}
\sin \frac{C}{2} &\frac{1}{\sin \frac{B}{2} \sin \frac{A}{2}} \\\\
\sin \frac{B}{2}& \frac{1}{\sin \frac{C}{2} \sin \frac{A}{2}}
\end{vmatrix}\\
&= 2 \sin \frac{B-A}{2} \sin \frac{C-A}{2} \frac{\sin \frac{C}{2} \sin \frac{B}{2} - \sin \frac{B}{2} \sin \frac{C}{2}}{\sin \frac{A}{2} \sin \frac{B}{2}\sin \frac{C}{2}} \\
&=0
\end{align*}

It is worth reading Mollweide's formula.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net