Limit and number theory

General Mathematics
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Limit and number theory

#1

Post by Tolaso J Kos »

Evaluate the limit:

$$\lim_{n \rightarrow +\infty} \frac{1}{n^2} \sum_{k \leq n} \varphi(k)$$

where $\varphi$ is the Euler's function.
Imagination is much more important than knowledge.
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Limit and number theory

#2

Post by Grigorios Kostakos »

We use that \[\displaystyle\mathop{\sum}\limits_{k=1}^n\varphi(k)=\frac{3n^2}{\pi^2}+{\cal{O}}\big(n\log^{2/3}n\,\log^{4/3}(\log{n})\big)\]
Because \[\displaystyle\mathop{\lim}\limits_{n\to+\infty}\frac{1}{n^2}\,{\cal{O}}\big(n\log^{2/3}n\,\log^{4/3}(\log{n})\big)=0\quad (*)\] we have that
\begin{align*}
\displaystyle\mathop{\lim}\limits_{n\to+\infty}\frac{1}{n^2}\mathop{\sum}\limits_{k=1}^n\varphi(k)&=\frac{3}{\pi^2}+\mathop{\lim}\limits_{n\to+\infty}\frac{1}{n^2}\,{\cal{O}}\big(n\log^{2/3}n\,\log^{4/3}(\log{n})\big)\\
&=\frac{3}{\pi^2}+0\\
&=\frac{3}{\pi^2}\,.
\end{align*}


\((*)\) Left as an exercise.
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 13 guests