Functional analysis and Algebra

General Mathematics
Post Reply
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Functional analysis and Algebra

#1

Post by Papapetros Vaggelis »

Check here first

Let \(\displaystyle{n\in\mathbb{N}\,,n\geq 2}\). Define a norm in the \(\displaystyle{\mathbb{R}}\) - space \(\displaystyle{\left(\mathbb{M}_{n}\,(\mathbb{R}),+,\cdot\right)}\) such that the \(\displaystyle{\mathbb{R}}\) - spaces \(\displaystyle{\left(\mathbb{B}\,(\mathbb{R}^{n},\mathbb{R}^{n}),+,\cdot\right)}\) and \(\displaystyle{\left(\mathbb{M}_{n}\,(\mathbb{R}),+,\cdot\right)}\) be isometrically isomorphic and then find a base for \(\displaystyle{\left(\mathbb{B}\,(\mathbb{R}^{n},\mathbb{R}^{n}),+,\cdot\right)}\).



Note : \(\displaystyle{\left(\mathbb{R}^{n},||\cdot||\right)=\left(\mathbb{R}^{n},||\cdot||_{2}\right)}\), where \(\displaystyle{||\cdot||_{2}}\) is the \(\displaystyle{\rm{Eucleidean}}\) norm.
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: Functional analysis and Algebra

#2

Post by Papapetros Vaggelis »

Let \(\displaystyle{f\in\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right)}\) . Since \(\displaystyle{f}\) is linear, there exists

\(\displaystyle{A=\left(a_{ij}\right)\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)}\) such that \(\displaystyle{f(x)=f_{A}(x)=A\cdot x^{T}\,,x\in\mathbb{R}^{n}}\).

If \(\displaystyle{x=\left(x_1,x_2,...,x_n\right)\in\mathbb{R}^{n}}\), then :

\(\displaystyle{f(x)=\left(a_{11}\,x_1+a_{12}\,x_2+...+a_{1n}\,x_n,...,a_{n1}\,x_1+a_{n2}\,x_2+...+a_{nn}\,x_n\right)}\),

so :

\(\displaystyle{||f(x)||_{2}=\sqrt{\sum_{i=1}^{n}\,\left(\sum_{j=1}^{n}a_{ij}\,x_{j}\right)^2}}\) .

Now, by \(\displaystyle{\rm{Cauchy-Schwarz}}\) inequality in the \(\displaystyle{\rm{Hilbert}}\) space

\(\displaystyle{\left(\mathbb{R},+,\cdot,<,>\right)}\), we get :

\(\displaystyle{\forall\,i\in\left\{1,2,...,n\right\}: \left(\sum_{j=1}^{n}a_{ij}\,x_{j}\right)^2\leq \left(\sum_{j=1}^{n}a_{ij}^2\right)\,\left(\sum_{j=1}^{n}x_{j}^2\right)=||x||^2\,\left(\sum_{j=1}^{n}a_{ij}^2\right)}\)

and then :

\(\displaystyle{||f(x)||_{2}\leq \sqrt{\sum_{i=1}^{n}\,\sum_{j=1}^{n}a_{ij}^2\,||x||^2}=\sqrt{\sum_{i=1}^{n}\,\sum_{j=1}^{n}a_{ij}^2}\,||x||}\), so :

\(\displaystyle{||f(x)||_{2}\leq a\,||x||\,,\forall\,x\in\mathbb{R}^{n}}\), where :

\(\displaystyle{a=\sqrt{\sum_{i=1}^{n}\,\sum_{j=1}^{n}a_{ij}^2}\geq 0}\) .

Also, by this progress, we proved that if \(\displaystyle{f=f_{A}}\) is a linear map for some \(\displaystyle{A\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)}\), then

\(\displaystyle{f}\) is continuous.

Note : \(\displaystyle{||f||=\sup\,\left\{||f(x)||_{2}: x\in\mathbb{R}^{n}\,,||x||_{2}\leq 1\right\}}\).

Therefore,

\(\displaystyle{\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right)=\left\{f_{A}:\mathbb{R}^{n}\longrightarrow \mathbb{R}^{n}: A\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)\right\}}\) .

We define \(\displaystyle{g:\mathbb{M}_{n}\,\left(\mathbb{R}\right)\longrightarrow \mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right)}\) by

\(\displaystyle{g(A)=f_{A}}\).

If \(\displaystyle{A\,,B\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)}\) and \(\displaystyle{c\in\mathbb{R}}\), then,

for each \(\displaystyle{x\in\mathbb{R}^{n}}\) holds :

\(\displaystyle{\begin{aligned} g(A+B)(x)&=f_{A+B}(x)\\&=\left(A+B\right)\cdot x^{T}\\&=A\cdot x^{T}+B\cdot x^{T}\\&=f_{A}(x)+f_{B}(x)\\&=\left(f_{A}+f_{B}\right)\cdot x^{T}\\&=\left(g(A)+g(B)\right)(x)\end{aligned}}\)

and

\(\displaystyle{\begin{aligned} g(c\,A)(x)&=f_{c\,A}(x)\\&=\left(c\,A\right)\cdot x^{T}\\&=c\,\left(A\cdot x^{T}\right)\\&=c\,f_{A}(x)\\&=(c\,g(A))(x)\end{aligned}}\)

so : \(\displaystyle{g(A+B)=g(A)+g(B)\,,g(c\,A)=c\,g(A)}\), which means that the function \(\displaystyle{g}\) is \(\displaystyle{\mathbb{R}}\) - linear .

Let \(\displaystyle{f\in\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right)}\). Then, \(\displaystyle{f=f_{A}}\) for some

\(\displaystyle{A\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)}\) and \(\displaystyle{g(A)=f_{A}=f}\).

Therefore, \(\displaystyle{g}\) is onto \(\displaystyle{\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right)}\) .

Consider now \(\displaystyle{A\,,B\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)}\) such that \(\displaystyle{g(A)=g(B)}\).

So, \(\displaystyle{f_{A}(x)=f_{B}(x)\iff A\cdot x^{T}=B\cdot x^{T}\,,\forall\,x\in\mathbb{R}^{n}}\) .

Setting \(\displaystyle{x=e_{i}\in\mathbb{R}^{n}\,,1\leq i\leq n}\) where \(\displaystyle{\left\{e_{i}: 1\leq i\leq n\right\}}\) is the usual base of

\(\displaystyle{\left(\mathbb{R}^{n},+,\cdot\right)}\), we get : \(\displaystyle{A=B}\), which means that the function \(\displaystyle{g}\) is one-one.

So, \(\displaystyle{\left(\mathbb{M}_{n}\,\left(\mathbb{R}\right),+,\cdot\right)\simeq \left(\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right),+,\cdot\right)}\)

and thus: \(\displaystyle{\dim_{\mathbb{R}}\,\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right)=\dim_{\mathbb{R}}\mathbb{M}_{n}\,\left(\mathbb{R}\right)=n^2}\).

If \(\displaystyle{\left\{E_{ij}\in\mathbb{M}_{n}\,\left(\mathbb{R}\right): 1\leq i\,,j\leq n\right\}}\) is the usual base of \(\displaystyle{\left(\mathbb{M}_{n}\,\left(\mathbb{R}\right),+,\cdot\right)}\), where :

\(\displaystyle{\left(E_{ij}\right)_{ab}=\begin{cases}
1\,\,\,\,,\left(a,b\right)=\left(i,j\right)\\
0\,\,\,\,,\left(a,b\right)\neq \left(i,j\right)
\end{cases}}\)

then, \(\displaystyle{\left\{f_{E_{ij}}\in\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right): 1\leq i\,,j\leq n\right\}}\) is a base for the

\(\displaystyle{\mathbb{R}}\) - space \(\displaystyle{\left(\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right),+,\cdot\right)}\)

We define \(\displaystyle{||\cdot||:\mathbb{R}^{n}\longrightarrow \mathbb{R}\,,A=\left(a_{ij}\right)\mapsto \sqrt{\sum_{i=1}^{n}\,\sum_{j=1}^{n}a_{ij}^2}}\)

and then we have that \(\displaystyle{||\cdot||}\) is a norm at \(\displaystyle{\left(\mathbb{M}_{n}\,\left(\mathbb{R}\right),+,\cdot\right)}\) .

Since \(\displaystyle{\left(\mathbb{B}\,\left(\mathbb{R}^{n},\mathbb{R}^{n}\right),||\cdot||\right)}\) is a \(\displaystyle{\rm{Banach}}\) space, then so

is \(\displaystyle{\left(\mathbb{M}_{n}\,\left(\mathbb{R}\right),||\cdot||\right)}\).

Note : If \(\displaystyle{A=\left(a_{ij}\right)\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)}\), then :

\(\displaystyle{||A||=\sqrt{\sum_{i=1}^{n}\,\sum_{j=1}^{n}a_{ij}^2}=\sqrt{Tr\,(A\cdot A^{T})}}\) .
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: Functional analysis and Algebra

#3

Post by Papapetros Vaggelis »

Additional question :

Prove that the series \(\displaystyle{\sum_{k=0}^{\infty}\dfrac{A^{k}}{k!}}\) converges for every

\(\displaystyle{A\in\mathbb{M}_{n}\,\left(\mathbb{R}\right)}\) according to the above norm.
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Functional analysis and Algebra

#4

Post by Tolaso J Kos »

I got carried away by this topic and did a little research of my own.. and found some amazing results.

Since the space \( E:=\mathcal M_n(\mathbb C) \) of all \(n×n\) complex matrices is a finite-dimensional vector space, all norms define the same topology. So we can take a sub-multiplicative norm, that is, a norm \( \lVert\cdot\rVert \) such that \( \lVert AB\rVert\leq \lVert A\rVert \cdot\lVert B\rVert \). (For example, we can take \( \lVert\cdot\rVert \) to be the operator norm on E.) As a finite dimensional vector space, E is complete, so it's enough to show normal convergence. We have that, for each integer \(n \geq 0 \) ,
$$0\leq ||A^{n}/n!||\leq \frac{\lVert A\rVert^n}{n!}$$

and we know that, for each real number \( x \) , the series \( \displaystyle \sum_{n=0}^{\infty}\frac{x^n}{n!} \) converges (it defines the exponential function). Therefore, for any \( A \in E \), the series \( \displaystyle \sum_{n=0}^{\infty}\frac{A^n}{n!} \) converges. (We also got the additional result that \( \displaystyle \lVert e^A\rVert\leq e^{\lVert A\rVert} , \;\; \forall A \in E \).)
_______________________________________________________
Some comments:
1. If \(A\) is a \(n \times n\) matrix then the series \( \displaystyle \sum_{n=0}^{\infty}\frac{A^n}{n!} \) converges absolutely.
2.If \(A, B\) are two commutative matrices then \(e^{AB} =e^{BA} \) otherwise the result does not necessarily hold true.
3.If \(A, B \) are two commutative matrices then \( \exp (A+B) =\exp A \cdot \exp B =\exp B \cdot \exp A \). This can be proved by Taylor's expansion.. (left as an exercise)
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 4 guests