Sum of series

Real Analysis
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Sum of series

#1

Post by Tolaso J Kos »

Sum the series: $$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{m^2 n}{3^m \left ( n\cdot 3^m+m\cdot 3^n \right )}$$
Imagination is much more important than knowledge.
jacks
Posts: 102
Joined: Thu Nov 12, 2015 5:26 pm
Location: Himachal Pradesh (INDIA)

Re: Sum of series

#2

Post by jacks »

Let $$S = \sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { { m }^{ 2 }n }{ { 3 }^{ m }(n{ 3 }^{ m }+m{ 3 }^{ n }) } } } $$ Using the fact that $$\sum_{m = 1}^\infty\sum_{n = 1}^\infty f(m,n) = \sum_{m = 1}^\infty\sum_{n = 1}^\infty f(n,m) $$ we can rewrite \(S\) as $$S = \sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { { n }^{ 2 }m }{ { 3 }^{ n }(n{ 3 }^{ m }+m{ 3 }^{ n }) } } } $$ Summing up, we have $$\begin{align*}2S &= \sum_{m = 1}^\infty\sum_{n = 1}^\infty \left({{ \frac { { m }^{ 2 }n }{ { 3 }^{ m }(n{ 3 }^{ m }+m{ 3 }^{ n }) } } } + { \frac { { n }^{ 2 }m }{ { 3 }^{ n }(n{ 3 }^{ m }+m{ 3 }^{ n }) } }\right) \\
&= \sum_{m = 1}^\infty\sum_{n = 1}^\infty\frac{3^nm^2n + 3^mn^2m}{3^{m+n}(n3^m + m3^n)}\\
&= \sum_{m = 1}^\infty\sum_{n = 1}^\infty\frac{mn(m3^n + n3^m)}{3^{m+n}(n3^m + m3^n)}\\
&= \sum_{m = 1}^\infty\sum_{n = 1}^\infty\frac{mn}{3^{m + n}}\\
&= \sum_{m = 1}^\infty\sum_{n = 1}^\infty \left(\frac{m}{3^m}\cdot\frac{n}{3^n}\right)\end{align*}$$ But \(\sum_{m = 1}^\infty\sum_{n = 1}^\infty x_my_n = \left(\sum_{m = 1}^\infty x_m \right)\left(\sum_{n = 1}^\infty y_n \right)\). Hence, $$\begin{align*}2S &= \left(\sum_{m = 1}^\infty \frac{m}{3^m}\right)\left(\sum_{n = 1}^\infty \frac{n}{3^n}\right)\\
&= \left(\sum_{n = 1}^\infty \frac{n}{3^n}\right)^2\end{align*}$$ To find this sum, we apply a classical trick: notice that for \(|x| < 1\),
$$\frac{1}{1-x} = 1 + x + x^2 + \dots$$ Differentiating and multiplying both sides by \(x\), $$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + \dots = \sum_{n = 1}^\infty nx^n$$ Substituting \(x = \frac{1}{3}\), $$\frac{3}{4} = \sum_{n = 1}^\infty \frac{n}{3^n}$$ So we deduce that $$2S = \left(\frac{3}{4}\right)^2$$ and finally, $$\sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { { m }^{ 2 }n }{ { 3 }^{ m }(n{ 3 }^{ m }+m{ 3 }^{ n }) } } } = S = \frac{9}{32}$$
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Sum of series

#3

Post by Tolaso J Kos »

Jacks , I like your solution very much! Well done !!
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 5 guests