\( \int_{0}^{1}\int_{0}^{1}\frac{dx\,dy}{1-xy} \)

Real Analysis
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

\( \int_{0}^{1}\int_{0}^{1}\frac{dx\,dy}{1-xy} \)

#1

Post by Tolaso J Kos »

Prove that: \( \displaystyle \int_{0}^{1}\int_{0}^{1}\frac{dx\,dy}{1-xy}=\frac{\pi^2}{6} \).
Imagination is much more important than knowledge.
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: \( \int_{0}^{1}\int_{0}^{1}\frac{dx\,dy}{1-xy} \)

#2

Post by Grigorios Kostakos »

\begin{align*}
\displaystyle \int_{0}^{1}{\int_{0}^{1}{\frac{1}{1-xy}\,dy}\,dx}&= -\int_{0}^{1}{\frac{\log(1-x)}{x}\,dx}\\
&=-\int_{0}^{1}{\frac{1}{x}\biggl({-\mathop{\sum}\limits_{n=1}^{\infty}{\frac{x^n}{n}}}\biggr)\,dx}\\
&=\mathop{\sum}\limits_{n=1}^{\infty}\biggl({\frac{1}{n}\,\int_{0}^{1}{x^{n-1}\,dx}}\biggr)\\
&=\mathop{\sum}\limits_{n=1}^{\infty}{\frac{1}{n}\,\frac{1}{n}}\\
&=\mathop{\sum}\limits_{n=1}^{\infty}{\frac{1}{n^2}}\\
&=\zeta(2)\\
&=\frac{\pi^2}{6}\,.
\end{align*}
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 15 guests