\( \int_{0}^{\infty}xe^{-x^3}\,dx \)

Real Analysis
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

\( \int_{0}^{\infty}xe^{-x^3}\,dx \)

#1

Post by Tolaso J Kos »

Prove that: \( \displaystyle \int_{0}^{\infty}xe^{-x^3}\,dx=\frac{1}{3}\Gamma \left ( \frac{2}{3} \right ) \).
Imagination is much more important than knowledge.
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: \( \int_{0}^{\infty}xe^{-x^3}\,dx \)

#2

Post by Papapetros Vaggelis »

The given integral converges because :

\(\displaystyle{\begin{aligned} \lim_{x\to +\infty}x^2\,x\,e^{-x^3}&=\lim_{x\to +\infty}\dfrac{x^3}{e^{x^3}}\\&=\lim_{x\to +\infty}\dfrac{\left(x^3\right)'}{\left(e^{x^3}\right)'}\\&=\lim_{x\to +\infty}\dfrac{3\,x^2}{3\,x^2\,e^{x^3}}\\&=\lim_{x\to +\infty}\dfrac{1}{e^{x^3}}\\&=0\end{aligned}}\)

By applying the substitution \(\displaystyle{t=x^3\,,t\in\left[0,+\infty\right)}\) , we get

\(\displaystyle{x=t^{1/3}\implies \mathrm{d}x=\dfrac{1}{3}\,t^{-2/3}\,\mathrm{d}t}\) and :

\(\displaystyle{\begin{aligned} \int_{0}^{\infty}x\,e^{-x^3}\,\mathrm{d}x&=\int_{0}^{\infty}t^{1/3}\,e^{-t}\,\dfrac{1}{3}\,t^{-2/3}\,\mathrm{d}t\\&=\dfrac{1}{3}\,\int_{0}^{\infty}t^{-1/3}\,e^{-t}\,\mathrm{d}t\\&=\dfrac{1}{3}\,\int_{0}^{\infty}t^{(2/3)-1}\,e^{-t}\,\mathrm{d}t\\&=\dfrac{1}{3}\,\Gamma\,\left(\dfrac{2}{3}\right)\end{aligned}}\)
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 15 guests