2 Indefinite Integrals

Real Analysis
Post Reply
jacks
Posts: 102
Joined: Thu Nov 12, 2015 5:26 pm
Location: Himachal Pradesh (INDIA)

2 Indefinite Integrals

#1

Post by jacks »

Evaluation of Following Indefinite Integrals

\(\displaystyle (a)\;\; \int\frac{(x-1)\sqrt{x^4+2x^3-x^2+2x+1}}{x^2\cdot (x+1)}dx\)

\(\displaystyle (b)\;\; \int e^{m\cdot \sin^{-1}(x)}dx\)
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: 2 Indefinite Integrals

#2

Post by Tolaso J Kos »

(b)
First of all we apply the sub \( u=\sin^{-1} x \) to get: \( \displaystyle \int e^{mu}\cos u\,du \).
Now apply IBP to get:

$$\begin{aligned}
\int e^{mu}\cos u\, du &=\frac{e^{mu}\cos u}{m}+\int e^{mu}\sin u\, du \\
&= \frac{e^{mu}\cos u}{m}+\frac{e^{mu}\sin u}{m^2}-\frac{1}{m^2}\int e^{mu}\cos u\, du \\
\end{aligned}$$

Now:
$$\left ( \frac{1}{m^2}+1 \right )\int e^{mu}\cos u\, du=\frac{e^{mu}\sin u}{m^2}+\frac{e^{mu}\cos u}{m} \iff \int e^{mu}\cos u \, du=\frac{\frac{e^{mu}\sin u}{m^2}+\frac{e^{mu}\cos u}{m}}{\frac{1}{m^2}+1}$$

Substitute back for \(u=\sin^{-1} x \) to get:
$$\int e^{m\sin^{-1}x}\, dx=\frac{\left ( m\sqrt{1-x^2}+x \right )e^{m\sin^{-1}x}}{m^2+1}+c, \,\,\,\,c\in \mathbb{R}$$

I do not see a clear pattern for (a).
Imagination is much more important than knowledge.
jacks
Posts: 102
Joined: Thu Nov 12, 2015 5:26 pm
Location: Himachal Pradesh (INDIA)

Re: 2 Indefinite Integrals

#3

Post by jacks »

Nice Solution Apostolos J. Kos.

** My Try for \(\displaystyle (a)\;\; I = \int\frac{(x-1)\sqrt{x^4+2x^3-x^2+2x+1}}{x^2\cdot (x+1)}dx\)

Multiply both \(\bf{N_{r}}\) and \(\bf{D_{r}}\) by \(x+1\), We Get

\(\displaystyle I = \int\frac{(x^2-1)\sqrt{x^4+2x^3-x^2+2x+1}}{x^2(x+1)^2}dx = \int\frac{\left(1-\frac{1}{x^2}\right)\sqrt{\left(x^2+\frac{1}{x^2}\right)+2\left(x+\frac{1}{x}\right)-1}}{\left(x+\frac{1}{x}+2\right)}dx\)

So \(\displaystyle I = \int\frac{\left(1-\frac{1}{x^2}\right)\sqrt{\left(x+\frac{1}{x}\right)^2+2\left(x+\frac{1}{x}\right)-3}}{\left(x+\frac{1}{x}+2\right)}dx\)

Now Substitute \(\left(x+\frac{1}{x}\right) = t\;,\) Then \(\left(1-\frac{1}{x^2}\right)dx = dt\), So \(\displaystyle I = \int\frac{\sqrt{t^2+2t-3}}{t+2}dt\)
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: 2 Indefinite Integrals

#4

Post by Tolaso J Kos »

Good job, Jacks... The last integral can be computed in latter by completing the square in the numinator , and then apply that sub. After some operations we'll get our desired result...
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 14 guests