Page 1 of 1

Identity function

Posted: Tue May 30, 2017 11:54 am
by Grigorios Kostakos
Let $h\,:\mathbb{R}\longrightarrow\mathbb{R}$ be a function defined and valued in all real numbers, strictly increasing and continuous. We define the functions $h^{[n]}:\mathbb{R}\longrightarrow\mathbb{R}\,,\; {n}\in\mathbb{Z}$, as $$h^{[n]}(x)=\left\{{\begin{array}{ll}
\mathop{(\underbrace{h\circ{h}\circ\ldots\circ{h}})}\limits_{n\;{\text{times}}}(x)\,,&{n}\in\mathbb{Z}^{+}\\
x\,,&{n}=0\\
\mathop{(\underbrace{{h^{-1}\circ{h^{-1}}\circ\ldots\circ{h^{-1}}}})}\limits_{n\;{\text{times}}}(x)\,,&{n}\in\mathbb{Z}^{-}
\end{array}}\right.\,,$$ where $h^{-1}$ is the inverse function of $h$.
If
  1. for every $x\in\mathbb{R}$, there exists an non-negative number $c_x$, such that, for every ${n}\in\mathbb{Z}$, holds
    $$\left|{h^{[\rm{n+1}]}(x)-h^{[n]}(x)}\right|=c_x$$ and
  2. there exists $x_0\in\mathbb{R}$, such that $h(x_0)=x_0$,
prove that $h(x)=x$, for all $x\in\mathbb{R}$.