Welcome to mathimatikoi.org forum; Enjoy your visit here.

## A limit with Euler's totient function

Real Analysis
Tolaso J Kos Articles: 2
Posts: 854
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

### A limit with Euler's totient function

Here is something I created.

Let $\varphi$ denote Euler’s totient function. Evaluate the limit

$$\ell = \lim_{n \rightarrow +\infty} \frac{1}{n^2} \sum_{k=1}^{n} \sin \left (\frac{\pi k}{n} \right) \varphi(k)$$
Imagination is much more important than knowledge.
Riemann
Articles: 0
Posts: 169
Joined: Sat Nov 14, 2015 6:32 am
Location: Melbourne, Australia

### Re: A limit with Euler's totient function

We are quoting a theorem by Omran Kouba:
Theorem:

Let $\alpha$ be a positive real number and let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of positive real numbers such that

$$\lim_{n \rightarrow +\infty} \frac{1}{n^\alpha} \sum_{k=1}^{n} a_k = \ell$$

For every continuous function $f$ on the interval $[0, 1]$ it holds that

$$\lim_{n \rightarrow +\infty} \frac{1}{n^\alpha} \sum_{k=1}^{n} f \left ( \frac{k}{n} \right ) a_k = \ell \int_{0}^{1} \alpha x^{\alpha-1} f(x) \, {\rm d}x$$
Proof: The theorem can be found at the attachment following:
MR_1_2010 Riemann Sums(kouba).pdf
Hence the limit is $\frac{6}{\pi^3}$.
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$