It is currently Sat Dec 15, 2018 12:31 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 2 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: Complex Integral of a singularity functionPosted: Wed May 02, 2018 9:37 pm

Joined: Wed Nov 15, 2017 12:37 pm
Posts: 20
Can someone help me with this one? I want to compute this integral without using the residue theorem. How is it solved if one uses Cauchy's integral theorem?
Assume that $f(z)=\frac{1}{(z-2)^2(z-4)}$, which has singularities at $2$ and $4$ and suppose we have to compute $\displaystyle\oint_{C}{f(z)\,dz}$ with $C$ been the positive oriented circle $|z|=3$, or $|z|=5$ (contour containing one or both singular points).

Top

 Post subject: Re: Complex Integral of a singularity functionPosted: Thu May 03, 2018 6:23 am
 Team Member

Joined: Mon Nov 09, 2015 1:36 am
Posts: 454
Location: Ioannina, Greece
The function $f(z)=\frac{1}{(z-2)^2(z-4)}$ is defined and is holomorphic on $\mathbb{C}\setminus\{2,4\}$. The disk $D_1=\big\{{z\in\mathbb{C}\;|\;|z|\leqslant3}\big\}$ containing the second order pole $z_1=2$, but not the simple pole $z_2=4$. By Cauchy's integral formula we have \begin{align*}
\displaystyle\oint_{|z|=3}\frac{1}{(z-2)^2(z-4)}\,dz&=\oint_{|z|=3}{\dfrac{\frac{1}{z-4}}{(z-2)^2}\,dz}\\
&=\frac{2\pi i}{1!}\,\frac{d}{dz}\Big(\frac{1}{z-4}\Big)\bigg|_{z=2}\\
&=2\pi i\,\Big(-\frac{1}{4}\Big)\\
&=-\frac{\pi i}{2}\,.
\end{align*}
For the second integral, see that $f(z)=\frac{1}{(z-2)^2(z-4)}=\frac{1}{4(z-4)}-\frac{z}{4(z-2)^2}$. So,
\begin{align*}
\displaystyle\oint_{|z|=5}\frac{1}{(z-2)^2(z-4)}\,dz&=\frac{1}{4}\oint_{|z|=5}{\frac{1}{z-4}\,dz}-\frac{1}{4}\oint_{|z|=5}\frac{z}{(z-2)^2}\,dz\\
&=\frac{2\pi i}{4}-\frac{1}{4}\frac{2\pi i}{1!}\,\frac{d}{dz}z\,\bigg|_{z=2}\\
&=\frac{\pi i}{2}-\frac{\pi i}{2}\\
&=0\,.
\end{align*}

_________________
Grigorios Kostakos

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 2 posts ]

 All times are UTC [ DST ]

Mathimatikoi Online

Users browsing this forum: Exabot [Bot] and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta