mathimatikoi.orghttps://www.mathimatikoi.org/forum/ Trigonometric functions under different definitionhttps://www.mathimatikoi.org/forum/viewtopic.php?f=3&t=942 Page 1 of 1

 Author: Tolaso J Kos [ Thu Jul 14, 2016 1:03 pm ] Post subject: Trigonometric functions under different definition An other way to define the trigonometric functions is by using their power series, that is: $$\sin x = \sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{\left ( 2n+1 \right )!},\; \cos x = \sum_{n=0}^{\infty}\frac{(-1)^n x^{2n}}{\left ( 2n \right )!}, \; x \in \mathbb{R}$$ The classic definition of the trigonometric functions is based on the unit circle. a. Use the definition given above to prove that:$$\sin 0 =0, \; \cos 0 =1$$$$\left ( \sin x \right )'= \cos x , \; \left ( \cos x \right )' =-\sin x$$$$\sin^2 x + \cos^2 x =1$$b. Prove that the classic definition, the definition given above and the definition $$\displaystyle \sin x = \frac{e^{ix}-e^{-ix}}{2i}, \; \cos x =\frac{e^{ix}+e^{-ix}}{2}$$ are equivalent.

 Page 1 of 1 All times are UTC [ DST ] Powered by phpBB® Forum Software © phpBB Grouphttps://www.phpbb.com/