Welcome to mathimatikoi.org forum; Enjoy your visit here.

Differential equations

Real & Complex Analysis, Calculus & Multivariate Calculus, Functional Analysis,
Tolaso J Kos
Articles: 2
Posts: 855
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Differential equations

Solve the differential equation:

$$f''(x)+5f'(x)+6f(x)=0$$

where $f'(0)=3, \;\; f(0)=2$

and the differential equation:

$$f''(x)+f(x)=\sin 2x$$

where $f'(0)=1, \;\; f(0)=2$
Imagination is much more important than knowledge.
Papapetros Vaggelis
Community Team
Articles: 0
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: Differential equations

Hello Tolis.

The characterstic polynomial of the first equation is the $\displaystyle{f(y)=y^2+5\,y+6\,y\in\mathbb{C}_[y]}$ with

$\displaystyle{f(y)=0\iff y^2+5\,y+6=0\iff \left(y+2\right)\,\left(y+3\right)=0\iff y=-3\,\,\lor\,\,y=-2}$ .

So, the general solution of tthe equation is $\displaystyle{f(x)=c_1\,e^{-3\,x}+c_2\,e^{-2\,x}\,,x\in\mathbb{R}}$ .

Since $\displaystyle{f(0)=2}$, we get : $\displaystyle{c_1+c_2=2}$ . Also,

$\displaystyle{f^\prime(x)=-3\,c_1\,e^{-3\,x}-2\,c_2\,e^{-2\,x}\,,x\in\mathbb{R}}$ and then :

$\displaystyle{f^\prime(0)=3\iff -3\,c_1-2\,c_2=3\iff -3\,(2-c_2)-2\,c_2=3\iff c_2=9\implies c_1=-7}$, so :

$\displaystyle{f:\mathbb{R}\longrightarrow \mathbb{R}\,,f(x)=-7\,e^{-3\,x}+9\,e^{-2\,x}}$ .

Now, for the second equation :

Consider the equation $\displaystyle{f^{\prime \prime}(x)+f(x)=0}$ with characteristic polynomial

$\displaystyle{g(y)=y^2+1}$ and $\displaystyle{g(y)=0\iff y=\pm i}$, so :

the general solution of the second equation is

$\displaystyle{f(x)=h(x)+k_1\,\cos\,x+k_2\,\sin\,x\,,x\in\mathbb{R}}$ , where

$\displaystyle{h}$ is a partial solution of $\displaystyle{f^{\prime \prime}(x)+f(x)=\sin\,(2\,x)}$ given by :

$\displaystyle{h(x)=\int_{0}^{x}\dfrac{\cos\,t\,\sin\,x-\sin\,t\,\cos\,x}{\cos^2\,t+\sin^2\,t}\cdot \sin\,(2\,t)\,\mathrm{d}t=...=\dfrac{1}{3}\,\sin\,x-\dfrac{1}{3}\,\sin\,(2\,x)\,,x\in\mathbb{R}}$ .
Mia Weaver
Articles: 0
Posts: 4
Joined: Mon May 07, 2018 3:07 pm

Re: Differential equations

A fairly detailed example, now I have to repeat a complex analysis