Inner product space
Inner product space
Hi everyone!
I faced with a problem: prove that two vectors of inner product space is on the same ray only when $\left \| x+y \right \| = \left \| x \right \| + \left \| y \right \|$.
Does anyone know how to prove it?
I faced with a problem: prove that two vectors of inner product space is on the same ray only when $\left \| x+y \right \| = \left \| x \right \| + \left \| y \right \|$.
Does anyone know how to prove it?
- Tolaso J Kos
- Administrator
- Posts: 866
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Re: Inner product space
Hint: Equality holds when vectors are parallel i.e, $u=kv$, $k \in \mathbb{R}^+$ because $u \cdot v= \|u \| \cdot \|v\| \cos \theta$ when $\cos \theta=1$, the equality of the Cauchy-Schwarz inequality holds.
Imagination is much more important than knowledge.
Create an account or sign in to join the discussion
You need to be a member in order to post a reply
Create an account
Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute
Sign in
Who is online
Users browsing this forum: No registered users and 1 guest