It is currently Fri Oct 19, 2018 11:01 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Closed linear subspace
PostPosted: Thu May 18, 2017 9:02 pm 
Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
For \(\displaystyle{p\in\left[1,+\infty\right)}\), consider

\(\displaystyle{E_{p}:=\left\{f\in L^{p}([0,+\infty))\,\,,\int_{0}^{\infty}f(x)\,\mathrm{d}x=0\right\}}\).


(Lebesgue measure)


i. Prove that \(\displaystyle{E_{p}}\) is a linear subspace of \(\displaystyle{L^{p}([0,+\infty))}\).


ii. Prove that \(\displaystyle{E_{p}}\) is closed if, and only if, \(\displaystyle{p=1}\).


Top
Offline Profile  
Reply with quote  

PostPosted: Thu May 18, 2017 11:24 pm 

Joined: Thu Dec 10, 2015 1:58 pm
Posts: 59
Location: India
If, $p = 1$, then $E_1$ is clearly a closed subspace of $L^1([0,\infty))$ as: If $f_n \overset{L^1}{\longrightarrow} f$ for $f_n \in E_1$, then $\displaystyle \left|\int_{0}^{\infty} f\,dx\right| = \left|\int_{0}^{\infty} (f-f_n)\,dx\right| \le \int_{0}^{\infty} \left|f - f_n\right|\,dx \underset{n \to \infty}{\longrightarrow} 0$, i.e., $f \in E_1$.

I thought about the converse for some time, there must be an argument simpler than what I have in mind. :oops:

For the converse, if $p > 1$, it suffices to show that $\displaystyle E_p^{\infty} = \left\{f \in C_c^{\infty} \cap L^p([0,\infty)): \int_0^{\infty} f\,dx = 0\right\}$ is dense in $L^p([0,\infty))$ (since, $E_p^{\infty} \subset E_p \subset L^p([0,\infty))$ are proper subspaces in that order, $L^p$-closure of $E_p$ must be $L^p([0,\infty))$).

Let, $f \in E_p$, by Lusin's theorem, $\displaystyle \exists g \in C_c^{\infty}$ such that $\lVert g - f \rVert_p < \epsilon$. If, $\displaystyle \int_0^{\infty} g \,dx = 0$ then $g \in E_p^{\infty}$ and we are done. Suppose, $\displaystyle J = \int_0^{\infty} g \,dx \neq 0$, then let, $\text{supp } g \cap [n,\infty) = \emptyset$ for some $n \ge 1$. Pick a 'standard' mollifier $\phi \in C_c^{\infty}$ supported in $[n,\infty)$ (i.e., $\text{supp } \phi \subset [n,\infty)$, $\phi \ge 0$ and $\displaystyle \int_0^{\infty} \phi \,dx = 1$) such that $\displaystyle \lVert \phi \rVert_p < \frac{\epsilon}{|J|}$.

Consider, $h = g - J\phi \in E_p^{\infty}$, which satisfies $\displaystyle \lVert f - h \rVert_p \le \lVert f - g \rVert_p + |J|\lVert \phi \rVert_p \le 2\epsilon$. This shows that $E_p^{\infty}$ is dense in $L^p([0,\infty))$.

To see the existence of such a 'standard' mollifier with required properties, using Urysohn's lemma one finds a $C^{\infty}$ function $\psi_m : (0,\infty) \to [0,1]$ such that $\psi_m\rvert_{[n+1,n+m+1]} = 1$ and $\text{supp } \psi_m \subset [n,n+m+2]$ for $n,m \ge 1$. Then $\displaystyle J = \int_0^{\infty} \psi_m\,dx \ge \int_0^\infty \chi_{[n+1,n+m+1]}\,dx = m > 0$. Then normalize, $\phi_m := \dfrac{\psi_m}{J}$, so that $\displaystyle \int_0^{\infty} \phi_m\,dx = 1$ and $\displaystyle 0 \le \phi_m \le \frac{1}{m}$. Clearly, $\displaystyle \lVert \phi_m \rVert_p \le \left[\int_n^{n+m+2} \frac{1}{m^p}\,dx\right]^{1/p} = \left(1+\frac{2}{m}\right)^{1/p}\frac{1}{m^{1-\frac{1}{p}}} \to 0$ as $m \to \infty$ (since, $p > 1$). That is $\lVert \phi_m \rVert_p$ can be made arbitrarily small by choosing large $m$.


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net