It is currently Mon May 20, 2019 4:26 pm

 All times are UTC [ DST ]

 Page 1 of 1 [ 3 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: LemmaPosted: Thu Mar 02, 2017 5:52 pm
 Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
Let $\displaystyle{\left(H,\langle{,\rangle}\right)}$ be a Hilbert space. If $\displaystyle{U:H\to H}$

is a $\displaystyle{\mathbb{C}}$ - linear and bounded operator such that $\displaystyle{||U||\leq 1}$, then prove that

$\displaystyle{\left(\forall\,h\in H\right)\,\,\left(U(h)=h\iff U^{\star}(h)=h\right)}$.

Top

 Post subject: Re: LemmaPosted: Sat May 27, 2017 5:48 pm

Joined: Thu Dec 10, 2015 1:58 pm
Posts: 59
Location: India
Since, $U : H \to H$ satisfies $\lVert U \rVert \le 1$, then $$\left<(I-U)h,h\right> = \lVert h \rVert^2 - \left< Uh,h \right> \ge \lVert h \rVert^2 (1 - \lVert U \rVert) \ge 0 \text{ for all } h \in H$$
We claim that, $N(I-U) = R(I-U)^{\perp}$

If, $h \in N(I-U)$ then, $\left<(I-U)(h - th'), h - th'\right> \ge 0 \implies t^2\left<(I-U)h' , h'\right> - t\left<(I-U)h' , h\right> \ge 0$ for all $h' \in H$ and $t \in \mathbb{R}$.

It follows that $\left<(I-U)h', h\right> = 0$ for all $h' \in H$, i.e., $N(I-U) \subseteq R(I-U)^{\perp}$.

To see the other way inclusion, similarly if $h \in R(I-U)^{\perp}$, then $\left<(I-U)(th' - h),th' - h\right> \ge 0$ for all $h' \in H$ and $t \in \mathbb{R}$,

Implies $t^2\left<(I-U)h' ,h'\right> - t\left<(I-U) h,h'\right> \ge 0$ for all $t \in \mathbb{R}$.

Hence, $\left<(I-U) h,h'\right> = 0$ for all $h' \in H$. That is $h \in N(I-U)$.

Now, since $N((I-U)^{*}) = R(I-U)^{\perp}$ (this is standard result for adjoint of an operator between Banach spaces), it follows $N(I-U) = N(I - U^{*})$, i.e., $U(h) = h \iff U^{*}(h) = h$.

Top

 Post subject: Re: LemmaPosted: Sat May 27, 2017 7:38 pm
 Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
Hi r9m.

Here is another solution.

Since $\displaystyle{||U||\leq 1}$, we get $\displaystyle{||U(x)||\leq ||x||\,,\forall\,x\in H}$.

Let $\displaystyle{h\in H}$. Suppose that $\displaystyle{U(h)=h}$. Then,

\displaystyle{\begin{aligned}||U^{\star}(h)-h||^2&=\langle{U^{\star}(h)-h,U^{\star}(h)-h\rangle}\\&=||U^{\star}(h)||^2-\langle{U^{\star}(h),h\rangle}-\langle{h,U^{\star}(h)\rangle}+||h||^2\\&\leq ||U(h)||^2+||h||^2-\langle{h,U(h)\rangle}-\langle{h,U(h)\rangle}\\&=2\,||h||^2-2\,||h||^2\\&=0 \end{aligned}}

so, $\displaystyle{U^{\star}(h)=h}$.

Now, suppose that $\displaystyle{U^{\star}(h)=h}$. Then,

$\displaystyle{||U(h)-h||^2=...=0\implies U(h)=h}$.

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 3 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta