\(\sum_{n=1}^{\infty}\bigl({\frac{1}{n}-\log\bigl({\frac{n+1}{n}}\bigr)}\bigr)\)

Calculus (Integrals, Series)
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

\(\sum_{n=1}^{\infty}\bigl({\frac{1}{n}-\log\bigl({\frac{n+1}{n}}\bigr)}\bigr)\)

#1

Post by Grigorios Kostakos »

Find the sum \[\displaystyle\mathop{\sum}\limits_{n=1}^{\infty}\biggl({\frac{1}{n}-\log\bigl({\tfrac{n+1}{n}}\bigr)}\biggr)\,.\]
Grigorios Kostakos
admin
Administrator
Administrator
Posts: 40
Joined: Mon Oct 26, 2015 12:27 pm

Re: \(\sum_{n=1}^{\infty}\bigl({\frac{1}{n}-\log\bigl({\frac{n+1}{n}}\bigr)}\bigr)\)

#2

Post by admin »

Replied by ex-member aziiri:

First, let us take the sum up to \(m\) instead of \(\infty\).
\[\sum_{n=1}^m \frac{1}{n} - \log\left(\frac{n+1}{n} \right)= \sum_{n=1}^m \frac{1}{n} -\sum_{n=1}^m \bigl(\log(n+1)-\log(n)\bigr).\] Telescoping the last sum gives us that the requested sum is : \[\lim_{m\to \infty} -\log(m+1) + \sum_{n=1}^m \frac{1}{n}.\] Which is the definition of the Euler Mascheroni constant.
admin
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: \(\sum_{n=1}^{\infty}\bigl({\frac{1}{n}-\log\bigl({\frac{n+1}{n}}\bigr)}\bigr)\)

#3

Post by Grigorios Kostakos »

To be precise: \[\mathop{\lim}\limits_{m\to \infty} \biggl(-\log(m+1) + \sum_{n=1}^m \frac{1}{n}\biggr)=\mathop{\lim}\limits_{m\to \infty} \biggl(-\frac{1}{m+1}-\log(m+1) +\sum_{n=1}^{m+1} \frac{1}{n}\biggr)=0+\gamma=\gamma\,.\]
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 5 guests