Some Indefinite Integrals

Calculus (Integrals, Series)
Post Reply
jacks
Posts: 102
Joined: Thu Nov 12, 2015 5:26 pm
Location: Himachal Pradesh (INDIA)

Some Indefinite Integrals

#1

Post by jacks »

  1. \(\displaystyle \int\frac{x}{1+x^5}dx\)
  2. \(\displaystyle \int\frac{x^6}{1+x^5}dx\)
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Some Indefinite Integrals

#2

Post by Grigorios Kostakos »

1. \begin{align*}
\qquad J&=\displaystyle \int\frac{x}{1+x^5}\,dx\\
&=\frac{1}{5}\int{\frac{1+\sqrt {5}+\bigl({1-\sqrt{5}\,}\bigr)\,x}{2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\,dx}+\frac{1}{5}\int{\frac {1-\sqrt{5}+\bigl({1+\sqrt{5}\,}\bigr)\,x}{2x^2+\bigl({-1+\sqrt{5}\,}\bigr)\,x+2}\,dx}-\frac{1}{5}
\int{\frac {1}{1+x}\,dx}\\
&=\frac{1}{5}\,J_1+\frac{1}{5}\,J_2-\frac{1}{5}\,\log|{1+x}|+c_1\,.
\end{align*} \begin{align*}
J_1&=\displaystyle\int{\frac{1+\sqrt{5}+\bigl({1-\sqrt{5}\,}\bigr)\,x}{2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\,dx}\\
&=\frac{1-\sqrt{5}}{4}\int{\frac { 4x-1-\sqrt{5}}{2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\,dx}+\int{\frac {\sqrt{5}}{2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\,dx}\\
&=\frac{1-\sqrt{5}}{4}\,\log\bigl|{2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\bigr|+c_2+\int{\frac{4\sqrt{5}}{\bigl({\frac{4x-1-\sqrt{5}}{\sqrt{2}}\,}\bigr)^2+5-\sqrt{5}}\,dx}\\
&=\frac{1-\sqrt{5}}{4}\,\log\bigl({2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\bigr)+c_2+\frac{\sqrt{2}}{\sqrt{5}-1}\int{\frac{1}{\Bigl({\frac{4x-1-\sqrt{5}}{\sqrt{2}\sqrt{5-\sqrt{5}}}}\Bigr)^2+1}\,d\Bigl({\tfrac{4x-1-\sqrt{5}}{\sqrt{2}\sqrt{5-\sqrt{5}}}}\Bigr)}\\
&=\frac{1-\sqrt{5}}{4}\,\log\bigl({2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\bigr)+\frac{\sqrt{2}}{\sqrt{\sqrt{5}-1}}\,\arctan\Bigl({\tfrac{4x-1-\sqrt{5}}{\sqrt{2}\sqrt{5-\sqrt{5}}}}\Bigr)+c_3\,.
\end{align*} Similarly \[J_2=\displaystyle\frac{1+\sqrt{5}}{4}\,\log\bigl({2x^2-\bigl({1-\sqrt{5}\,}\bigr)\,x+2}\bigr)-\frac{\sqrt{2}}{\sqrt{\sqrt{5}+1}}\,\arctan\Bigl({\tfrac{4x-1+\sqrt{5}}{\sqrt{2}\sqrt{5+\sqrt{5}}}}\Bigr)+c_4\,.\] So \begin{align*}
J&=\frac{1}{5}\,J_1+\frac{1}{5}\,J_2-\frac{1}{5}\,\log|{1+x}|+c_1\\
&=\frac{1-\sqrt{5}}{20}\,\log\bigl({2x^2-\bigl({1+\sqrt{5}\,}\bigr)\,x+2}\bigr)+\frac{\sqrt{2}}{5\sqrt{\sqrt{5}-1}}\,\arctan\Bigl({\tfrac{4x-1-\sqrt{5}}{\sqrt{2}\sqrt{5-\sqrt{5}}}}\Bigr)\,+\\
&\qquad\frac{1+\sqrt{5}}{20}\,\log\bigl({2x^2-\bigl({1-\sqrt{5}\,}\bigr)\,x+2}\bigr)-\frac{\sqrt{2}}{5\sqrt{\sqrt{5}+1}}\,\arctan\Bigl({\tfrac{4x-1+\sqrt{5}}{\sqrt{2}\sqrt{5+\sqrt{5}}}}\Bigr)-\frac{1}{5}\,\log|{1+x}|+c\,.
\end{align*}
Grigorios Kostakos
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Some Indefinite Integrals

#3

Post by Grigorios Kostakos »

2. \begin{align*}
K&=\displaystyle \int\frac{x^6}{1+x^5}\,dx\quad\Rightarrow\\
K+J&=\displaystyle \int\frac{x^6+x}{1+x^5}\,dx= \int{x\,dx}=\frac{x^2}{2}\quad\Rightarrow\\
K&=\frac{x^2}{2}-J\,.
\end{align*}
Grigorios Kostakos
jacks
Posts: 102
Joined: Thu Nov 12, 2015 5:26 pm
Location: Himachal Pradesh (INDIA)

Re: Some Indefinite Integrals

#4

Post by jacks »

Thanks for Nice solution Grigorios Kostakos.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 7 guests