definite integration

Calculus (Integrals, Series)
Post Reply
jacks
Posts: 102
Joined: Thu Nov 12, 2015 5:26 pm
Location: Himachal Pradesh (INDIA)

definite integration

#1

Post by jacks »

\(\displaystyle \int_{0}^{\infty}\frac{1}{(x+\sqrt{x^2+1})^3}dx\)
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: definite integration

#2

Post by Grigorios Kostakos »

Substituting \(x=\sinh{t}\) we have \(\sqrt{x^2+1}=\cosh{t}\) and \(dx=\cosh{t}\,dt\). So
\[J=\displaystyle \int_{0}^{\infty}\frac{1}{\bigl(x+\sqrt{x^2+1}\,\bigr)^3}\,dx=\int_{0}^{\infty}\frac{\cosh{t}}{(\sinh{t}+\cosh{t})^3}\,dt\,.\]
But \(\cosh{t}=\dfrac{e^t+e^{-t}}{2}\) and \((\sinh{t}+\cosh{t})^3=e^{3t}\) and so \begin{align*}
J&=\displaystyle\int_{0}^{\infty}\frac{e^t+e^{-t}}{2e^{3t}}\,dt=\frac{1}{2}\int_{0}^{\infty}e^{-4t}\,dt+\frac{1}{2}\int_{0}^{\infty}{e^{-2t}}\,dt\,\mathop{=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=}\limits^{\begin{subarray}{c}
{u\,=e^{-4t}\,,\;-\frac{1}{4}\,du=dt} \\
{v\,=e^{-2t}\,,\;-\frac{1}{2}\,dv=dt}
\end{subarray}}-\frac{1}{2}\,\frac{1}{4}\int_{1}^{0}u\,du-\frac{1}{2}\frac{1}{2}\int_{1}^{0}{v}\,dv\\
& =\frac{1}{2}\,\frac{1}{4}\int_{0}^{1}u\,du+\frac{1}{2}\frac{1}{2}\int_{0}^{1}{v}\,dv=\frac{1}{2}\,\frac{1}{4}\,1+\frac{1}{2}\,\frac{1}{2}\,1=\frac{3}{8}\,.
\end{align*}
Grigorios Kostakos
jacks
Posts: 102
Joined: Thu Nov 12, 2015 5:26 pm
Location: Himachal Pradesh (INDIA)

Re: definite integration

#3

Post by jacks »

Thanking You Grigorios Kostakos for Nice Solution Using Hyperbolic function
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 4 guests