$\int_{0}^{\infty}{{\mathrm{e}}^{-{\mathrm{i}}\,x^2}dx}$

Calculus (Integrals, Series)
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

$\int_{0}^{\infty}{{\mathrm{e}}^{-{\mathrm{i}}\,x^2}dx}$

#1

Post by Grigorios Kostakos »

Calculate the integral:

$$\int_{0}^{\infty}{{\mathrm{e}}^{-{\mathrm{i}}\,x^2}dx}\,.$$
Grigorios Kostakos
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: $\int_{0}^{\infty}{{\mathrm{e}}^{-{\mathrm{i}}\,x^2}dx}$

#2

Post by Tolaso J Kos »

We will use contour integration on a wedge shaped contour of angle $\widehat{\omega} =\pi/4$ as our contour and an infinite large radius $R$. We are integrating on this contour the function $f(z)=e^{-iz^2}$. The contour is shown at the image below:
wedge shaped contour.jpg
wedge shaped contour.jpg (4.74 KiB) Viewed 2268 times
[/centre]

Clearly $f$ has no poles inside the contour , hence from Cauchy Residue Theorem we have that:


$$\oint_{\gamma} f(z) \, {\rm d}z =0 $$


Splitting the contour apart (into the two segments and the arc that is consisted of and at the same time taking care of the paramatrization) we have that:


$$\oint_{\gamma}f(z)\, {\rm d}z=\int_{0}^{R}e^{-x^2}\,{\rm d}x+\int_{0}^{\pi/4}iRe^{i\phi}e^{-R^2 e^{2i\phi}}\,{\rm d} \phi+\int_{R}^{0}e^{i\pi /4}e^{-ir^2}\,{\rm d}r$$


However the integral over the arc , as $R \rightarrow +\infty$ , goes to $0$ since:


$$\begin{aligned}\left | \int_{0}^{\pi/4}iRe^{i\phi}e^{-R^2e^{2i\phi}} \,{\rm d} \phi \right | &\leq \int_{0}^{\pi/4}\left | iRe^{i\phi}e^{-R^2 e^{2i\phi}} \right |\,{\rm d} \phi\\&\leq \int_{0}^{\pi/4}R\left | e^{-R^2 e^{2i\phi}} \right |\,{\rm d} \phi =\int_{0}^{\pi/4}Re^{-R^2 \cos 2\phi}\, {\rm d} \phi\\

&\overset{2\phi =t}{=\! =\! =\!}\int_{0}^{\pi/2}\frac{R}{2}e^{-R^2 \sin t }\,{\rm d}t \\&\leq \int_{0}^{\pi/2}\frac{R}{2}e^{-2R^2 t /\pi}\,{\rm d}t \\&\leq \frac{\pi}{4R}\left ( -e^{-R^2}+1 \right )\overset{R\rightarrow +\infty}{\longrightarrow }0 \end{aligned}$$


Hence:


$$\int_{0}^{\infty}e^{-x^2}\,{\rm d}x=e^{i\pi/4}\int_{0}^{\infty}e^{-ir^2}\,{\rm d}r \Rightarrow e^{-i\pi/4}\int_{0}^{\infty}e^{-x^2}\,{\rm d}x=\int_{0}^{\infty}e^{-ix^2}\,{\rm d}r$$


So combining Euler's Formula ($e^{ix}=\cos x +i \sin x$) and the Gaussian Integral we finally get that,


$$\int_0^\infty e^{-ix^2}\, {\rm d}x = \frac{1}{2}\sqrt{\frac{\pi}{2}} - i \frac{1}{2}\sqrt{\frac{\pi}{2}}$$
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 6 guests