Welcome to mathimatikoi.org forum; Enjoy your visit here.

Integral and power series

Calculus (Integrals, Series)
Post Reply
User avatar
Tolaso J Kos
Administration team
Administration team
Articles: 2
Posts: 860
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa

Integral and power series


Post by Tolaso J Kos » Wed Nov 11, 2015 12:04 pm

Let \(\displaystyle I=\int_{0}^{1}\left ( \left \lfloor \frac{2}{x} \right \rfloor-2\left \lfloor \frac{1}{x} \right \rfloor \right )\, {\rm d}x\).

If \(\displaystyle e^{I+1}=\sum_{n=0}^{\infty }\left ( \frac{a}{b} \right )^n\) where \(\displaystyle a, b\) are coprime numbers, then calculate the sum \(\displaystyle S=a+b\).

Hidden message
P.S Currently I don't have a solution, but I'm working on it.
Imagination is much more important than knowledge.
User avatar
Grigorios Kostakos
Articles: 0
Posts: 460
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Integral and power series


Post by Grigorios Kostakos » Wed Nov 11, 2015 12:05 pm

We give a solution to some point:

I&=\int_{0}^{1}\left ( \left \lfloor \frac{2}{x} \right \rfloor-2\left \lfloor \frac{1}{x} \right \rfloor \right )dx\\
{t\,=\,\frac{1}{x}} \\
\end{subarray}}\,\int_{1}^{+\infty}\frac{1}{t^2}\bigl({\lfloor{2t}\rfloor-2\lfloor{t}\rfloor }\bigr)\,dt\\
&=\sum_{n=1}^{\infty }\int_{n+\frac{1}{2}}^{n+1}{\frac{1}{t^2}\,dt}\\
&=\sum_{n=1}^{\infty }\frac {1}{(n+1)(2n+1)}\\
\end{align*} So \(e^{I+1}=e^{\log4-1+1}=4\) and the geometric series must be converges to \(4\), i.e. \(a<b\) and \[\sum_{n=0}^{\infty }\left ( \frac{a}{b} \right )^n=\frac{b}{b-a}=4\,.\] So we have that \(b=\frac{4}{3}\,a\,.\)

Remains the evaluation of the number \(S=a+\frac{4}{3}a=\frac{7}{3}a\) with the assumption that \({\rm{gcd}}\bigl(a,\tfrac{4}{3}a\bigr)=1\,.\)

\(\bullet\) In the graph below appears that the integral \(\int_{1}^{+\infty}\frac{1}{t^2}\bigl({\lfloor{2t}\rfloor-2\lfloor{t}\rfloor }\bigr)\,dt\) is equal to the infinite sum of the integrals \(\int_{n+\frac{1}{2}}^{n+1}{\frac{1}{t^2}\,dt}\,,\; n\in\mathbb{N}\,.\)
floorsfunction.png (9.58 KiB) Viewed 946 times
Grigorios Kostakos
Post Reply