Laplace transform of a function!

Calculus (Integrals, Series)
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Laplace transform of a function!

#1

Post by Tolaso J Kos »

Prove that:

$$\int_{0}^{\infty}e^{-x} \ln \left ( \ln \left ( e^x+ \sqrt{e^{2x}-1} \right ) \right )\, {\rm d}x = -\gamma+ 4 \log \Gamma \left ( \frac{1}{4} \right )-3\log 2 -2 \log \pi$$

where $\gamma$ stands for the Euler - Mascheroni constant and $\Gamma$ is the Gamma function.
Imagination is much more important than knowledge.
whitexlotus
Posts: 10
Joined: Sun Sep 04, 2016 5:08 am

Re: Laplace transform of a function!

#2

Post by whitexlotus »

Tolaso J Kos wrote:Prove that:

$$\int_{0}^{\infty}e^{-x} \ln \left ( \ln \left ( e^x+ \sqrt{e^{2x}-1} \right ) \right )\, {\rm d}x = -\gamma+ 4 \log \Gamma \left ( \frac{1}{4} \right )-3\log 2 -2 \log \pi$$

where $\gamma$ stands for the Euler - Mascheroni constant and $\Gamma$ is the Gamma function.
Hi tolaso, I'm pprime (http://artofproblemsolving.com/community/c89" onclick="window.open(this.href);return false;), I do not have much free time, so write briefly my solution

$$\int\limits_{0}^{+\infty }{e^{-x}\ln \ln \left( e^{x}+\sqrt{e^{2x}-1} \right)dx}=\int\limits_{0}^{+\infty }{e^{-x}\ln \left( \cosh ^{-1}e^{x} \right)dx}=\int\limits_{1}^{+\infty }{\frac{\ln \left( \cosh ^{-1}e^{x} \right)}{x^{2}}dx}$$

$$=\int\limits_{0}^{+\infty }{\frac{\sinh x\ln x}{\cosh ^{2}x}dx}$$

Consider
$$F\left( s \right)=\int\limits_{0}^{+\infty }{\frac{x^{s}\sinh x}{\cosh ^{2}x}dx}$$ and note that $$F'\left( 0 \right)=\int\limits_{0}^{+\infty }{\frac{\sinh x\ln x}{\cosh ^{2}x}dx}=\int\limits_{0}^{+\infty }{e^{-x}\ln \ln \left( e^{x}+\sqrt{e^{2x}-1} \right)dx}$$

then
$$F\left( s \right)=\int\limits_{0}^{+\infty }{\frac{x^{s}\sinh x}{\cosh ^{2}x}dx}=s\int\limits_{0}^{+\infty }{\frac{x^{s-1}}{\cosh x}dx}=2s\int\limits_{0}^{+\infty }{\frac{e^{-x}x^{s-1}}{1+e^{-2x}}dx}$$

$$=2s\int\limits_{0}^{+\infty }{e^{-x}x^{s-1}\sum\limits_{n=0}^{+\infty }{\left( -e^{-2x} \right)^{n}}dx=}2s\sum\limits_{n=0}^{+\infty }{\left( -1 \right)^{n}\int\limits_{0}^{+\infty }{e^{-x-2nx}x^{s-1}dx}}$$

$$=2s\Gamma \left( s \right)\sum\limits_{n=0}^{+\infty }{\frac{\left( -1 \right)^{n}}{\left( 1+2n \right)^{s}}}=2^{1-s}s\Gamma \left( s \right)\sum\limits_{n=0}^{+\infty }{\frac{\left( -1 \right)^{n}}{\left( \frac{1}{2}+n \right)^{s}}}$$

$$S=\sum\limits_{n=0}^{+\infty }{\frac{\left( -1 \right)^{n}}{\left( \frac{1}{2}+n \right)^{s}}}=\frac{\left( -1 \right)^{0}}{\left( \frac{1}{2}+0 \right)^{s}}+\frac{\left( -1 \right)^{1}}{\left( \frac{1}{2}+1 \right)^{s}}+\frac{\left( -1 \right)^{2}}{\left( \frac{1}{2}+2 \right)^{s}}+\frac{\left( -1 \right)^{3}}{\left( \frac{1}{2}+3 \right)^{s}}+\frac{\left( -1 \right)^{4}}{\left( \frac{1}{2}+4 \right)^{s}}+\frac{\left( -1 \right)^{5}}{\left( \frac{1}{2}+5 \right)^{s}}+...$$

$$=\left( \frac{1}{\left( \frac{1}{2} \right)^{s}}+\frac{1}{\left( \frac{1}{2}+2 \right)^{s}}+\frac{1}{\left( \frac{1}{2}+4 \right)^{s}}+... \right)-\left( \frac{1}{\left( \frac{1}{2}+1 \right)^{s}}+\frac{1}{\left( \frac{1}{2}+3 \right)^{s}}+\frac{1}{\left( \frac{1}{2}+5 \right)^{s}}+... \right)$$

$$=\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( \frac{4n+1}{2} \right)^{s}}}-\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( \frac{4n+3}{2} \right)^{s}}}=\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( 2n+\frac{1}{2} \right)^{s}}}-\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( 2n+\frac{3}{2} \right)^{s}}}$$

$$=\frac{1}{2^{s}}\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( n+\frac{1}{4} \right)^{s}}}-\frac{1}{2^{s}}\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( n+\frac{3}{4} \right)^{s}}}=\frac{1}{2^{s}}\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)$$

$$F\left( s \right)=2^{1-s}s\Gamma \left( s \right)\sum\limits_{n=0}^{+\infty }{\frac{\left( -1 \right)^{n}}{\left( \frac{1}{2}+n \right)^{s}}}=2^{1-2s}\Gamma \left( s+1 \right)\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)$$

$$=2^{1-2s}\Gamma \left( s+1 \right)\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)$$

$$F'\left( s \right)=\frac{d}{ds}2^{1-2s}\Gamma \left( s+1 \right)\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)$$

$$=\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)\frac{d}{ds}\left( 2^{1-2s}\Gamma \left( s+1 \right) \right)+2^{1-2s}\Gamma \left( s+1 \right)\frac{d}{ds}\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)$$

$$=2^{1-2s}\Gamma \left( s+1 \right)\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)\left( \psi ^{\left( 0 \right)}\left( s+1 \right)-2\log 2 \right)+2^{1-2s}\Gamma \left( s+1 \right)\frac{d}{ds}\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)$$

where $$\zeta \left( s,q \right)=\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( q+n \right)^{s}}}$$
$$\frac{d}{ds}\zeta \left( s,\frac{1}{4} \right)=\frac{d}{ds}\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( n+\frac{1}{4} \right)^{s}}}=-\left( \frac{\log \left( \frac{1}{4} \right)}{\left( \frac{1}{4} \right)^{s}}+\frac{\log \left( 1+\frac{1}{4} \right)}{\left( 1+\frac{1}{4} \right)^{s}}+\frac{\log \left( 2+\frac{1}{4} \right)}{\left( 2+\frac{1}{4} \right)^{s}}+\frac{\log \left( 3+\frac{1}{4} \right)}{\left( 3+\frac{1}{4} \right)^{s}}+... \right)$$

$$\frac{d}{ds}\zeta \left( s,\frac{3}{4} \right)=\frac{d}{ds}\sum\limits_{n=0}^{+\infty }{\frac{1}{\left( n+\frac{3}{4} \right)^{s}}}=-\left( \frac{\log \left( \frac{3}{4} \right)}{\left( \frac{3}{4} \right)^{s}}+\frac{\log \left( 1+\frac{3}{4} \right)}{\left( 1+\frac{3}{4} \right)^{s}}+\frac{\log \left( 2+\frac{3}{4} \right)}{\left( 2+\frac{3}{4} \right)^{s}}+\frac{\log \left( 3+\frac{3}{4} \right)}{\left( 3+\frac{3}{4} \right)^{s}}+... \right)$$

$$F'\left( 0 \right)=2\Gamma \left( 1 \right)\left( \zeta \left( 0,\frac{1}{4} \right)-\zeta \left( 0,\frac{3}{4} \right) \right)\left( \psi ^{\left( 0 \right)}\left( 1 \right)-2\log 2 \right)+2\Gamma \left( 1 \right)\frac{d}{ds}\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)\left| _{s=0} \right.$$

$$F'\left( 0 \right)=-\left( \gamma +2\log 2 \right)+2\frac{d}{ds}\left( \zeta \left( s,\frac{1}{4} \right)-\zeta \left( s,\frac{3}{4} \right) \right)\left| _{s=0} \right.$$

$$=-\left( \gamma +2\log 2 \right)-2\log \left( \frac{\Gamma \left( \frac{3}{4} \right)}{\Gamma \left( \frac{1}{4} \right)} \right)=-\left( \gamma +2\log 2 \right)-2\log \left( \frac{\sqrt{2}\pi }{\Gamma ^{2}\left( \frac{1}{4} \right)} \right)$$

$$=-\gamma -3\log 2-2\log \pi +4\log \Gamma \left( \frac{1}{4} \right)$$

Done (:
Civil Engineer
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Laplace transform of a function!

#3

Post by Tolaso J Kos »

Hi pprime. Thank you for accepting my invitation and joined the forum. Hope you enjoy it!
Regards,

T.
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 9 guests