It is currently Tue Jun 18, 2019 2:20 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 3 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: $\sum_{n=2}^{\infty}(-1)^n \frac{\ln n}{n} =?$Posted: Thu Mar 24, 2016 3:27 pm

Joined: Fri Dec 04, 2015 4:54 pm
Posts: 14
$$\sum_{n=2}^{\infty}(-1)^n \frac{\ln n}{n} =?$$

Top

 Post subject: Re: $\sum_{n=2}^{\infty}(-1)^n \frac{\ln n}{n} =?$Posted: Thu Mar 24, 2016 9:58 pm

Joined: Sun Dec 13, 2015 2:26 pm
Posts: 56
I am gonna begin this way. Of course, I am sure there are many ways to begin.

$$\frac{1}{n^{a}}=\frac{1}{\Gamma(a)}\int_{0}^{\infty}e^{-nt}t^{a-1}dt$$

Then:

$$\sum_{n=1}^{\infty}\frac{\cos(nx)}{n^{a}}=\frac{1}{\Gamma(a)}\sum_{n=1}^{\infty}\cos(nx)\int_{0}^{\infty}e^{-nt}t^{a-1}dt$$

$$=\frac{1}{\Gamma(a)}\int_{0}^{\infty}\left(\sum_{n=1}^{\infty}\cos(nx)e^{-nt}\right)t^{a-1}dt$$

Use the handy and famous Poisson thingie:

$$\sum_{n=1}^{\infty}x^{n}\cos(n\theta)=\frac{x(\cos\theta-x)}{x^{2}-2x\cos\theta+1}$$

and let $x=e^{-t}$ to get:

$$=\frac{1}{\Gamma(a)}\int_{0}^{\infty}\frac{e^{-t}(\cos(x)-e^{-t})}{e^{-2t}-2e^{-t}\cos(x)+1}t^{a-1}dt$$

Make the sub $u=e^{-t}, \;\ t=\ln(1/u), \;\ du=-e^{-t}$

and obtain:

$$\sum_{n=1}^{\infty}\frac{\cos(nx)}{n^{a}}=-\frac{1}{\Gamma(a)}\int_{0}^{1}\frac{\log^{a-1}(1/u)(u-\cos(x))}{u^{2}-2u\cos(x)+1}du$$

Now diff w.r.t 'a':

$$\sum_{n=1}^{\infty}\frac{\cos(nx)\log(n)}{n^{a}}=\frac{1}{\Gamma(a)}\int_{0}^{1}\frac{(u-\cos(x))\log^{a-1}(1/u)\log(\log(1/u))}{u^{2}-2u\cos(x)+1}du-\frac{\psi(a)}{\Gamma(a)}\int_{0}^{1}\frac{(u-\cos(x))\log^{a-1}(1/u)}{u^{2}-2u\cos(x)+1}du$$

This looks horrendous, but is deceiving. It really ain't too bad upon allowing

$a=1, \;\ x=\pi, \;\ \cos(\pi n)=(-1)^{n}$. Go ahead and make the beginning sum index for the left ln term be n=2 since n=1 results in 0 anyway.

$$\sum_{n=1}^{\infty}\frac{(-1)^{n}\ln(n)}{n}=\int_{0}^{1}\frac{(u+1)\log\log(1/u)}{u^{2}+2u+1}du-\psi(1)\int_{0}^{1}\frac{u+1}{u^{2}+2u+1}du$$

Since $\psi(1)=-\gamma$, the rightmost integral is elementary and evaluates to $\gamma\ln(2)$

For brevity's sake, let the integral remaining with the loglog be represented by $I$. Resulting in

$$\sum_{n=2}^{\infty}\frac{(-1)^{n}\ln(n)}{n}=I+\gamma \ln(2)$$

Now, the nasty-looking integral with the loglog is not that horrible and is in a class of its own. It has been done quite a bit in the lit and on the forums; all sorts of similar integrals.

This particular one evaluates to $-\frac{1}{2}\ln^{2}(2)$. It is on the sites and in the lit, but can be derived if need be.

So, the final result is then:

$$\boxed{\sum_{n=2}^{\infty}\frac{(-1)^{n}\ln(n)}{n}=-\frac{1}{2}\ln^{2}(2)+\gamma \ln(2)}$$

Top

 Post subject: Re: $\sum_{n=2}^{\infty}(-1)^n \frac{\ln n}{n} =?$Posted: Sat Jun 03, 2017 7:48 pm

Joined: Mon Oct 26, 2015 12:27 pm
Posts: 40
A solution given by akotronis :

Let $\displaystyle{S_{n}:=\sum_{k=1}^{n}(-1)^k\frac{\ln k}{k}}$. First observe that, by Dirichlet's criterion, the series converges, because $(-1)^k$ has bounded partial sums and $\displaystyle{\frac{\ln k}{k}}$ is eventually decreasing to $0$. Therefore $$\displaystyle\lim_{n\to+\infty}S_{2n}=\sum_{k=1}^{\infty}(-1)^k\frac{\ln k}{k}.$$ Now: \begin{align*}
S_{2n}&=\sum_{k=1}^{n}\frac{\ln2k}{2k}-\sum_{k=1}^{n}\frac{\ln(2k-1)}{2k-1}\\
&=\frac{\ln2}{2}\sum_{k=1}^{n}\frac{1}{k}+\frac{1}{2}\sum_{k=1}^{n}\frac{\ln k}{k}-\left(\sum_{k=1}^{2n}\frac{\ln k}{k}-\sum_{k=1}^{n}\frac{\ln2k}{2k}\right)\\
&=\ln2\,H_{n}+\sum_{k=1}^{n}\frac{\ln k}{k}-\sum_{k=1}^{2n}\frac{\ln k}{k}\\
&=\ln2\,H_{n}-\sum_{k=1}^{n}\frac{\ln(n+k)}{n+k}\\
&=\ln2\,H_{n}-\sum_{k=1}^{n}\frac{\ln n+\ln(1+k/n)}{n+k}\\
&=\ln2\,H_{n}-\ln n\,(H_{2n}-H_{n})-\frac{1}{n}\sum_{k=1}^{n}\frac{\ln(1+k/n)}{1+k/n}\\
&=H_{n}\ln(2n)-H_{2n}\ln n-\frac{1}{n}\sum_{k=1}^{n}\frac{\ln(1+k/n)}{1+k/n}\\
&\stackrel{H_{n}=\ln n+\gamma+\mathcal O(1/n)}{=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=}\gamma\ln2+\mathcal O(1/n)-\frac{1}{n}\sum_{k=1}^{n}\frac{\ln(1+k/n)}{1+k/n}\\
&\longrightarrow\gamma\ln2-\int_{0}^{1}\frac{\ln(1+x)}{1+x}\,dx\\
&=\gamma\ln2-\frac{\ln^22}{2}\,.
\end{align*}

_________________

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 3 posts ]

 All times are UTC [ DST ]

Mathimatikoi Online

Users browsing this forum: No registered users and 2 guests

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta