Welcome to mathimatikoi.org forum; Enjoy your visit here.

## A Ramanujan's result

Calculus (Integrals, Series)
Tolaso J Kos
Articles: 2
Posts: 860
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

### A Ramanujan's result

Let $\displaystyle \text{Ti}_2(x) = \int_0^x \frac{\arctan t}{t}\, {\rm d}t$ . Ramanujan proved that:

$$\text{Ti}_2 \left(2-\sqrt{3} \right)=\frac{\pi}{12}\log \left(2-\sqrt{3} \right) +\frac{2}{3}\mathcal{G}$$

where $\mathcal{G}$ is the Catalan's constant.

Can you provide a proof for the result?
Imagination is much more important than knowledge.
Papapetros Vaggelis
Community Team
Articles: 0
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

### Re: A Ramanujan's result

We are invoking $\displaystyle{\rm{Fourier}}$ series and integration by parts, so :

\begin{aligned} \int_0^{2-\sqrt{3}}\frac{\arctan x}{x}\,{\rm d}x &= \frac{\pi}{12}\log \left( 2-\sqrt{3}\right)- \int_0^{2-\sqrt{3}}\frac{\log x}{1+x^2}\,{\rm d}x \\ &= \frac{\pi}{12}\log \left( 2-\sqrt{3}\right)- \int_0^{\pi/12}\log \left(\tan \theta \right) \,{\rm d}\theta \\ &= \frac{\pi}{12}\log \left( 2-\sqrt{3}\right) +2 \int_0^{\pi/12} \sum_{n \text{ odd}}^\infty \frac{\cos(2 n\theta)}{n} \ d\theta \\ &= \frac{\pi}{12}\log \left( 2-\sqrt{3}\right) + \sum_{n \text{ odd}}^\infty \frac{\sin \left(\frac{\pi n}{6} \right)}{n^2} \\ &= \frac{\pi}{12}\log \left(2-\sqrt{3} \right) + \frac{1}{2} \left( \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^2} +\sum_{n=0}^\infty \frac{(-1)^n}{(6n+3)^2}\right)+\frac{\mathcal{G}}{9} \\ &= \frac{\pi}{12}\log \left(2-\sqrt{3} \right) +\frac{2}{3}\mathcal{G} \end{aligned}

Hence :

$$\text{Ti}_2(2-\sqrt{3})=\dfrac{\pi}{12}\,\ln\,\left(2-\sqrt{3}\right)+\dfrac{2}{3}\,\mathcal{G}$$
Tolaso J Kos
Articles: 2
Posts: 860
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

### Re: A Ramanujan's result

Thank you Vaggelis. Ramanujan also proved that:
$$$$\text{Ti}_2 (y)-\text{Ti}_2 \left(\frac{1}{y} \right)=\frac{\pi}{2}\log y, \quad y>0$$$$

Setting $2-\sqrt{3}$ at $(1)$ we get that:

$$\text{Ti}_2 \left( 2+\sqrt{3}\right) = \frac{5\pi }{12} \log \left( 2+\sqrt{3}\right)+\frac{2}{3}\mathcal{G}$$

Another special value of this function is known, namely $\text{Ti}_2(1)$. It is equal to $\mathcal{G}$ where $\mathcal{G}$ is the Catalan constant.

Any other special values? Is anyone aware of any other values? I am , denifitely, not.
Imagination is much more important than knowledge.