\(\int_0^\infty\frac{|\sin{x}|+|\cos{x}|}{x+1}dx\)

Calculus (Integrals, Series)
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

\(\int_0^\infty\frac{|\sin{x}|+|\cos{x}|}{x+1}dx\)

#1

Post by Grigorios Kostakos »

Examine if the integral \(\displaystyle\int_{0}^{+\infty}{\frac{|{\sin{x}}|+|{\cos{x}}|}{x+1}dx}\) converges or not.
Grigorios Kostakos
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: \(\int_0^\infty\frac{|\sin{x}|+|\cos{x}|}{x+1}dx\)

#2

Post by Papapetros Vaggelis »

The answer is negative.

For all \(\displaystyle{x\geq 0}\), we have

\(\displaystyle{0\leq |{\sin x}|\leq 1\Rightarrow |{\sin x}|\geq \sin^2 x}\)

\(\displaystyle{0\leq |{\cos x}|\leq 1\Rightarrow |{\cos x}|\geq \cos^2 x}\)

So, for all \(\displaystyle{x\geq 0}\), we have

\(\displaystyle{|{\sin x}|+|{\cos x}|\geq \sin^2 x+\cos^2 x=1\Rightarrow \frac{|{\sin x}|+|{\cos x}|}{x+1}\geq \frac{1}{x+1}}\)

and

\(\displaystyle{\int_{0}^{+\infty}\frac{1}{x+1}\,dx=\lim_{x\to +\infty}\int_{0}^{x}\frac{1}{t+1}\,dt=\lim_{x\to +\infty}\ln (1+x)=+\infty}\)

Therefore, \(\displaystyle{\int_{0}^{+\infty}\frac{|{\sin x}|+|{\cos x}|}{x+1}\,dx=+\infty}\)
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 16 guests