Let $a\geq 1$. Prove that:
$$\int_{0}^{\pi} \left ( 1 + \cos x \right ) \ln \left ( a + \cos x \right )\, \mathrm{d}x = \pi \left ( a - \sqrt{a^2-1} \right ) + \pi \ln \left ( \frac{a + \sqrt{a^2-1}}{2} \right )$$
Welcome to mathimatikoi.org forum; Enjoy your visit here.