Series evaluation

Calculus (Integrals, Series)
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Series evaluation

#1

Post by Tolaso J Kos »

Taking for granted that: $\displaystyle \tan \frac{x}{2}=\cot \frac{x}{2}-2\cot x$ evaluate the series:

$$\sum_{n=1}^{\infty }\frac{1}{2^n}\tan \frac{x}{2^n}$$
Imagination is much more important than knowledge.
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Series evaluation

#2

Post by Grigorios Kostakos »

\(\color{gray}\bullet\) For \(x=0\) the series is equal to \(0\).

\(\color{gray}\bullet\) For \(x\neq 0\) we have that \begin{align*}
S_n(x)&=\mathop{\sum}\limits_{k=1}^{n}\frac{1}{2^k}\tan \bigl({\tfrac{x}{2^k}}\bigr)\\
&=\mathop{\sum}\limits_{k=1}^{n}\Bigl({\frac{1}{2^k}\cot \bigl({\tfrac{x}{2^k}}\bigr)-\frac{1}{2^{k-1}}\cot \bigl({\tfrac{x}{2^{k-1}}}\bigr)}\Bigr)\\
&=\mathop{\sum}\limits_{k=1}^{n}\frac{1}{2^k}\cot\bigl({\tfrac{x}{2^k}}\bigr)-\mathop{\sum}\limits_{k=1}^{n}\frac{1}{2^{k-1}}\cot\bigl({\tfrac{x}{2^{k-1}}}\bigr)\\
&=\mathop{\sum}\limits_{k=1}^{n}\frac{1}{2^k}\cot\bigl({\tfrac{x}{2^k}}\bigr)-\mathop{\sum}\limits_{k=0}^{n-1}\frac{1}{2^{k}}\cot\bigl({\tfrac{x}{2^{k}}}\bigr)\\
&=\frac{1}{2^n}\cot\bigl({\tfrac{x}{2^n}}\bigr)-\cot{x}\,.
\end{align*} Because \[\mathop{\lim}\limits_{n\to \infty}\frac{1}{2^n}\cot\bigl({\tfrac{x}{2^n}}\bigr)=\frac{1}{x}\,,\] we have that \[\sum_{n=1}^{\infty }\frac{1}{2^n}\tan \bigl({\tfrac{x}{2^n}}\bigr)=\mathop{\lim}\limits_{n\to \infty}S_n(x)=\frac{1}{x}-\cot{x}\,.\]
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 8 guests