A challenging integral

Calculus (Integrals, Series)
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

A challenging integral

#1

Post by Tolaso J Kos »

Prove that:

$$\int_{\pi}^{2\pi}\frac{\sin x}{e^x-\sin x-\cos x}\, dx=-\frac{\pi}{2}+\frac{1}{2}\ln \left ( e^\pi-1 \right )$$
Imagination is much more important than knowledge.
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: A challenging integral

#2

Post by Grigorios Kostakos »

\begin{align*}
\displaystyle \int_{\pi}^{2\pi}{\frac{\sin x}{e^x-\sin x-\cos x} dx}&=\int_{\pi}^{2\pi}{\frac{1}{2}\Bigl({\frac{e^x-\cos x+\sin x}{e^x-\sin x-\cos x}-1}\Bigr) dx}\\
&=\frac{1}{2}\int_{\pi}^{2\pi}{\frac{e^x-\cos x+\sin x}{e^x-\sin x-\cos x}dx}-\frac{1}{2}\int_{\pi}^{2\pi}{dx}\\
&=\frac{1}{2}\int_{\pi}^{2\pi}{\frac{(e^x-\sin x-\cos x)'}{e^x-\sin x-\cos x}dx}-\frac{\pi}{2}\\
&=\frac{1}{2}\Bigl[{\log(e^x-\sin x-\cos x)}\Bigr]_{\pi}^{2\pi}-\frac{\pi}{2}\\
&=\frac{1}{2}\bigl({\log(e^{2\pi}-1)-\log(e^{\pi}+1)}\bigr)-\frac{\pi}{2}\\
&=\frac{1}{2}\log\bigl({\tfrac{e^{2\pi}-1}{e^{\pi}+1}}\bigr)-\frac{\pi}{2}\\
&=\frac{1}{2}\log({e^{\pi}-1})-\frac{\pi}{2}\,.
\end{align*}
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 13 guests