It is currently Fri Dec 14, 2018 6:07 pm


All times are UTC [ DST ]




Post new topic Reply to topic  [ 3 posts ] 
Author Message
PostPosted: Wed Jul 26, 2017 8:05 pm 

Joined: Tue May 10, 2016 3:56 pm
Posts: 33
Show that
$$\sum_{n=1}^\infty\,\frac{(-1)^{n+1}}{(n+1)^2}H_nH_{n+1} = \frac{\pi^4}{480},$$
where $H_n$ is the $n$-th Harmonic number.


Top
Offline Profile  
Reply with quote  

PostPosted: Wed Jul 26, 2017 10:50 pm 
Administrator
Administrator
User avatar

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 837
Location: Larisa
Let $\mathcal{H}_n$ denote the $n$-th harmonic number and consider the power series

$$\sum_{n=1}^{\infty} \mathcal{H}_n \mathcal{H}_{n+1} x^n \quad , \quad -1 \leq x <1$$

Since $\mathcal{H}_{n+1} = \mathcal{H}_n + \frac{1}{n+1}$ then we have that

\begin{align*}
\sum_{n=1}^{\infty} \mathcal{H}_n \mathcal{H}_{n+1} x^n &= \sum_{n=1}^{\infty} \mathcal{H}_n \left ( \mathcal{H}_n + \frac{1}{n+1} \right ) x^n \\
&=\sum_{n=1}^{\infty} \mathcal{H}_n^2 x^n + \sum_{n=1}^{\infty} \frac{\mathcal{H}_n}{n+1}x^n \\
&=\frac{\log^2 (1-x) +{\rm Li}_2(x)}{1-x} + \frac{\log^2(1-x)}{2x}
\end{align*}

Thus mapping $x \mapsto -x$ we get that

$$\sum_{n=1}^{\infty} (-1)^{n+1} \mathcal{H}_n \mathcal{H}_{n+1} x^n = - \frac{\log^2 (1+x)+{\rm Li}_2(-x)}{1+x} + \frac{\log^2(1+x)}{2x}$$

Integrating we get that

\begin{align*}
\int \sum_{n=1}^{\infty} (-1)^{n+1} \mathcal{H}_n \mathcal{H}_{n+1} x^n \, {\rm d}x&= \sum_{n=1}^{\infty} (-1)^{n+1} \mathcal{H}_n \mathcal{H}_{n+1} \int x^n \, {\rm d}x \\
&= \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \mathcal{H}_n \mathcal{H}_{n+1} x^{n+1}}{n+1}\\
&=\int \left ( \frac{\log^2 (1+x)+{\rm Li}_2(-x)}{1+x} + \frac{\log^2(1+x)}{2x} \right ) \, {\rm d}x\\
&= -3 {\rm Li}_3 (1+x) + {\rm Li}_2(-x) \log(1+x)+ 3{\rm Li}_2 (1+x) \log(1+x) \\
&\quad \quad + \frac{\log^3(1+x)}{3} + \frac{3}{2} \log(-x) \log^2 \left ( 1+x \right )
\end{align*}

Hence

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \mathcal{H}_n \mathcal{H}_{n+1} x^{n-1}}{n+1} = \frac{1}{x} \bigg[-3 {\rm Li}_3 (1+x) + {\rm Li}_2(-x) \log(1+x)+$$
$$+3{\rm Li}_2 (1+x) \log(1+x)+ \frac{\log^3(1+x)}{3} + \frac{3}{2} \log(-x) \log^2 \left ( 1+x \right ) \bigg] $$

Integrating from $0$ to $1$ we must get the result .... :roll: :roll: There must be something more sufficient and clever here , no?

_________________
Imagination is much more important than knowledge.
Image


Top
Offline Profile  
Reply with quote  

PostPosted: Fri Jul 28, 2017 9:01 pm 

Joined: Thu Dec 10, 2015 1:58 pm
Posts: 59
Location: India
This is closely related to problem 11993 from American Mathematical Monthly Journal.

Now the problem presented in that integral form can be dealt with rather easily and one avoids having to calculate the last Euler Sum I left off .. :) There's an old blog post of mine with spoilers for this problem, :mrgreen: but honestly the problem is much simpler than I ever imagined.


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 3 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: Baidu [Spider] and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net