Spherical Coordinates

Multivariate Calculus
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Spherical Coordinates

#1

Post by Tolaso J Kos »

Find the volume of the solid within the sphere \( \mathbb{S}: x^2+y^2+z^2=4 \) above the \( xy \) plane and below the cone \( z^2 =x^2 +y^2 \).
Imagination is much more important than knowledge.
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Spherical Coordinates

#2

Post by Grigorios Kostakos »

$\Sigma_{+}=\big\{(x,y,z)\in{\mathbb{R}}^3\;|\; 0\leqslant z\leqslant\sqrt{4-x^2-y^2}\big\}$ is the upper half of the ball with center the origin and radius $2$ and \[\Sigma_1=\Big\{(x,y,z)\in{\mathbb{R}}^3\;\big|\;x^2+y^2\leqslant 2\,,\; \sqrt{x^2+y^2}\leqslant z\leqslant\sqrt{4-x^2-y^2}\;\Big\}\] is the solid which bounded below by the (half) cone $\big\{(x,y,z)\in{\mathbb{R}}^3\;|\; z=\sqrt{x^2+y^2}\big\}$ and above by the sphere $\big\{(x,y,z)\in{\mathbb{R}}^3\;|\; x^2+y^2+z^2=4\big\}$. The intersection of this cone and the sphere is the circle $\big\{\big(x,y,\sqrt{2}\,\big)\in{\mathbb{R}}^3\;|\; x^2+y^2=2\big\}$.
vol_bwn_sphere-cone.png
vol_bwn_sphere-cone.png (34.16 KiB) Viewed 2495 times
[/centre]
The volume in question is $V=V(\Sigma_{+})-V(\Sigma_1)$. It's well known that $V(\Sigma_{+})=\frac{4}{6}\,2^3\pi=\frac{16\pi}{3}$. If $D_1=\big\{(x,y)\in{\mathbb{R}}^2\;|\; x^2+y^2\leqslant 2\big\}$, then the volume of $\Sigma_1$ is \begin{align*}
V(\Sigma_1)&=\displaystyle\mathop{\iiint}\limits_{\Sigma_1}{\rm d}S\\
&=\mathop{\iint}\limits_{D_1}{\sqrt{4-x^2-y^2}-\sqrt{x^2+y^2}}\;{\rm d}(x,y)\\\ &=\int_{-\sqrt{2}}^{\sqrt{2}}\int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}}{\sqrt{4-x^2-y^2}-\sqrt{x^2+y^2}}\;{\rm d}y\,{\rm d}x
\end{align*} and changing to polar coordinates, we get \begin{align*}
V(\Sigma_1)&=\int_{0}^{\sqrt{2}}\int_{0}^{2\pi}\big(\sqrt{4-\rho^2}-\rho\big)\,\rho\,{\rm d}\varphi\,{\rm d}\rho\\
&=2\pi\int_{0}^{\sqrt{2}}\rho\sqrt{4-\rho^2}-\rho^2\,{\rm d}\rho\\
&=2\pi\int_{0}^{\sqrt{2}}\rho\sqrt{4-\rho^2}\,{\rm d}\rho-2\pi\int_{0}^{\sqrt{2}}\rho^2\,{\rm d}\rho\\
&=\frac{8\pi}{3}\,\big(2-\sqrt{2}\,\big)\,. \end{align*} Thus $$V=V(\Sigma_{+})-V(\Sigma_1)=\displaystyle\frac{16\pi}{3}-\frac{8\pi}{3}\,\big(2-\sqrt{2}\,\big)=\frac{8\pi\sqrt{2}}{3}\,.$$
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 4 guests