mathimatikoi.orghttps://www.mathimatikoi.org/forum/ Area & surface integralhttps://www.mathimatikoi.org/forum/viewtopic.php?f=23&t=1327 Page 1 of 1

 Author: Grigorios Kostakos [ Fri Aug 31, 2018 5:53 pm ] Post subject: Area & surface integral Let $E$ be the surface with parametric representation\begin{align*}\overline{R}:(-3,3)&\times[0,2\pi]\longrightarrow{\mathbb{R}}^3\,; \quad\overline{R}(r,\theta)=\left({\begin{array}{c} \frac{r}{\sqrt{9-r^2}}\,\cos{\theta}\\ \frac{r}{\sqrt{9-r^2}}\,\sin{\theta}\\ \theta \end{array}}\right)\,,\end{align*} and the solid cylinder $K: \big\{(x,y,z)\in{\mathbb{R}}^3\;|\; x^2+y^2\leqslant81,\, 0\leqslant z\leqslant 2\pi \big\}$.Find the area of the surface $S=E\cap K$.Let the vector field $\overline{F}:{\mathbb{R}}^3\longrightarrow{\mathbb{R}}^3\,;\quad\overline{F}(x,y,z)=\left({x+y+z\,,\,xyz\,,\,y^2}\right)\,.$ Find the surface integral $\oiint_{S}\big(\nabla\times\overline{F}\,\big)\cdot d\overline{S}$.

 Page 1 of 1 All times are UTC [ DST ] Powered by phpBB® Forum Software © phpBB Grouphttps://www.phpbb.com/