Welcome to mathimatikoi.org;a forum of university mathematics. Enjoy your stay here.

Area & surface integral

Multivariate Calculus
Post Reply
User avatar
Grigorios Kostakos
Articles: 0
Posts: 460
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Area & surface integral


Post by Grigorios Kostakos » Fri Aug 31, 2018 5:53 pm

Let $E$ be the surface with parametric representation
\overline{R}:(-3,3)&\times[0,2\pi]\longrightarrow{\mathbb{R}}^3\,; \quad
\end{align*} and the solid cylinder $K: \big\{(x,y,z)\in{\mathbb{R}}^3\;|\; x^2+y^2\leqslant81,\, 0\leqslant z\leqslant 2\pi \big\}$.
  1. Find the area of the surface $S=E\cap K$.
  2. Let the vector field $\overline{F}:{\mathbb{R}}^3\longrightarrow{\mathbb{R}}^3\,;\quad\overline{F}(x,y,z)=\left({x+y+z\,,\,xyz\,,\,y^2}\right)\,.$ Find the surface integral $\oiint_{S}\big(\nabla\times\overline{F}\,\big)\cdot d\overline{S}$.
Grigorios Kostakos
Post Reply