Surface area of an Elliptic Paraboloid

Multivariate Calculus
Post Reply
andrew.tzeva
Posts: 20
Joined: Wed Nov 15, 2017 12:37 pm

Surface area of an Elliptic Paraboloid

#1

Post by andrew.tzeva »

To calculate the surface area of the cut Paraboloid $$P=\bigg\{(x,y,z)\in\mathbb{R^3} : \frac{x^2}{a^2}+\frac{y^2}{b^2}=z\leq1,\quad a,b>0\bigg\}$$ we must evaluate the surface integral $$A_P=\iint_SdS=\iint_D\sqrt{\bigg(\frac{\partial g}{\partial x}\bigg)^2+\bigg(\frac{\partial g}{\partial y}\bigg)^2+1} \, dA$$ where $S$ is the surface of the paraboloid. Using the equation $$z=g(x,y)=\frac{x^2}{a^2}+\frac{y^2}{b^2}$$ of the Paraboloid, we get $$\iint_D\sqrt{\bigg(\frac{\partial g}{\partial x}\bigg)^2+\bigg(\frac{\partial g}{\partial y}\bigg)^2+1} \, dA=\iint_D\sqrt{\bigg(\frac{2x}{a^2}\bigg)^2+\bigg(\frac{2y}{b^2}\bigg)^2+1} \, dA$$ Changing to elliptic coordinates $$A_P=ab\int_0^1\int_0^{2\pi} \sqrt{1+\frac{4r^2\cos^2\theta}{a}+\frac{4r^2\sin^2\theta}{b}}\,r\,d\theta dr$$ but is there a shortcut to the solution of this double integral?
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Surface area of an Elliptic Paraboloid

#2

Post by Grigorios Kostakos »

andrew.tzeva wrote:... $$A_P=ab\int_0^1\int_0^{2\pi} \sqrt{1+\frac{4r^2\cos^2\theta}{a}+\frac{4r^2\sin^2\theta}{b}}\,r\,d\theta dr$$ ...
The integral $\int_0^{2\pi} \sqrt{1+\frac{4r^2\cos^2\theta}{a}+\frac{4r^2\sin^2\theta}{b}}\,d\theta$ is an elliptic integral of second type. Thus, the corresponding double integral it can not be evaluated in closed form.
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 8 guests